MHB Solve 3D Vector Equation: x-int=3, z-int=-1; (x,y,z)=(p1,p2,p3)+t(d1,d2,d3)

  • Thread starter Thread starter Raerin
  • Start date Start date
  • Tags Tags
    3d Vector
Click For Summary
To solve for a vector equation with an x-intercept of 3 and a z-intercept of -1, the equation can be expressed as (x, y, z) = (3, 0, 0) + t(3, 0, 1). The direction vector is derived from the difference between the two intercept points, calculated as (3, 0, 0) - (0, 0, -1) = (3, 0, 1). This formulation confirms that when t=0, the x-intercept is reached, and when t=-1, the z-intercept is achieved. The resulting equation represents a straight line through the specified intercepts. Thus, the vector equation effectively describes the desired line in three-dimensional space.
Raerin
Messages
46
Reaction score
0
Question:
Write a vector equation which has an x-intercept of 3 and a z-intercept of -1

I want it in the form of (x,y,z) = (p1, p2, p3) + t(d1, d2, d3)

I don't have a clear idea on how to solve it.
 
Mathematics news on Phys.org
So, if you're finding the equation of a line, and you're given two points on the line, that should determine the line. The $(d_{1},d_{2},d_{3})$ vector you've given is going to be the direction vector. Any idea how you could get that?
 
Ackbach said:
So, if you're finding the equation of a line, and you're given two points on the line, that should determine the line. The $(d_{1},d_{2},d_{3})$ vector you've given is going to be the direction vector. Any idea how you could get that?

It's point 2 minus point 1:
(3, 0, 0) - (0, 0, -1) = (3, 0, 1)?
 
Raerin said:
It's point 2 minus point 1:
(3, 0, 0) - (0, 0, -1) = (3, 0, 1)?

Excellent! Now what does your candidate equation look like?
 
Ackbach said:
Excellent! Now what does your candidate equation look like?

(x, y, z) = (3, 0, 0) + t(3, 0, 1)
 
Raerin said:
(x, y, z) = (3, 0, 0) + t(3, 0, 1)

Right. And check it out: $t=0$ yields your $x$ intercept, and $t=-1$ yields your $z$ intercept. So, this is the straight line through those two points.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
14
Views
4K