MHB Solve Equation II: $(1+a!)(1+b!)=(a+b)!$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve in non-negative integers the equation $(1+a!)(1+b!)=(a+b)!$.
 
Mathematics news on Phys.org
anemone said:
Solve in non-negative integers the equation $(1+a!)(1+b!)=(a+b)!$.

Hello.

(1+a!)(1+b!)=1+a!+a!b!+b!=(a+b)!

If \ a>b \rightarrow{}b!|(a!,a!b!,(a+b)!)

Therefore:

b!|1 \rightarrow{}b!=1 \rightarrow{}b=0 \ or \ b=1

If \ b=1 \rightarrow{}(1+a!)2=(a+1)!

2+2a!=(a+1)a! \rightarrow{}a=2

If \ b=0 \rightarrow{}(1+a!)2=a!

a!=-2 \ absurdity

The end:

If \ a=b \rightarrow{}(1+a!)(1+a!)=1+2a!+a!a!=(2a)!

a!|1 \rightarrow{}a=0 \ or \ a=1

If \ a=0 \rightarrow{}2*2=1 \ absurdity

If \ a=1 \rightarrow{}2*2=2 \ absurdity

I will conclude by:

If \ a>b \rightarrow{}a=2 \ and \ b=1

Same b>a ...

Regards.
 
Last edited:
mente oscura said:
Hello.

(1+a!)(1+b!)=1+a!+a!b!+b!=(a+b)!

If \ a>b \rightarrow{}b!|(a!,a!b!,(a+b)!)

Therefore:

b!|1 \rightarrow{}b!=1 \rightarrow{}b=0 \ or \ b=1

If \ b=1 \rightarrow{}(1+a!)2=(a+1)!

2+2a!=(a+1)a! \rightarrow{}a=2

If \ b=0 \rightarrow{}(1+a!)2=a!

a!=-2 \ absurdity

The end:

If \ a=b \rightarrow{}(1+a!)(1+a!)=1+2a!+a!a!=(2a)!

a!|1 \rightarrow{}a=0 \ or \ a=1

If \ a=0 \rightarrow{}2*2=1 \ absurdity

If \ a=1 \rightarrow{}2*2=2 \ absurdity

I will conclude by:

If \ a>b \rightarrow{}a=2 \ and \ b=1

Same b>a ...

Regards.

Well done, mente oscura! Thanks for participating too!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top