MHB Solve Equation II: $(1+a!)(1+b!)=(a+b)!$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The equation $(1+a!)(1+b!)=(a+b)!$ is being discussed for solutions in non-negative integers. Participants are encouraged to contribute their findings and methods for solving it. The conversation highlights the importance of collaboration in tackling complex mathematical problems. Engagement from users is noted, with appreciation for contributions. The thread emphasizes the collective effort in finding solutions to the equation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve in non-negative integers the equation $(1+a!)(1+b!)=(a+b)!$.
 
Mathematics news on Phys.org
anemone said:
Solve in non-negative integers the equation $(1+a!)(1+b!)=(a+b)!$.

Hello.

(1+a!)(1+b!)=1+a!+a!b!+b!=(a+b)!

If \ a>b \rightarrow{}b!|(a!,a!b!,(a+b)!)

Therefore:

b!|1 \rightarrow{}b!=1 \rightarrow{}b=0 \ or \ b=1

If \ b=1 \rightarrow{}(1+a!)2=(a+1)!

2+2a!=(a+1)a! \rightarrow{}a=2

If \ b=0 \rightarrow{}(1+a!)2=a!

a!=-2 \ absurdity

The end:

If \ a=b \rightarrow{}(1+a!)(1+a!)=1+2a!+a!a!=(2a)!

a!|1 \rightarrow{}a=0 \ or \ a=1

If \ a=0 \rightarrow{}2*2=1 \ absurdity

If \ a=1 \rightarrow{}2*2=2 \ absurdity

I will conclude by:

If \ a>b \rightarrow{}a=2 \ and \ b=1

Same b>a ...

Regards.
 
Last edited:
mente oscura said:
Hello.

(1+a!)(1+b!)=1+a!+a!b!+b!=(a+b)!

If \ a>b \rightarrow{}b!|(a!,a!b!,(a+b)!)

Therefore:

b!|1 \rightarrow{}b!=1 \rightarrow{}b=0 \ or \ b=1

If \ b=1 \rightarrow{}(1+a!)2=(a+1)!

2+2a!=(a+1)a! \rightarrow{}a=2

If \ b=0 \rightarrow{}(1+a!)2=a!

a!=-2 \ absurdity

The end:

If \ a=b \rightarrow{}(1+a!)(1+a!)=1+2a!+a!a!=(2a)!

a!|1 \rightarrow{}a=0 \ or \ a=1

If \ a=0 \rightarrow{}2*2=1 \ absurdity

If \ a=1 \rightarrow{}2*2=2 \ absurdity

I will conclude by:

If \ a>b \rightarrow{}a=2 \ and \ b=1

Same b>a ...

Regards.

Well done, mente oscura! Thanks for participating too!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K