MHB Solve for $a+b+c$: Equation System ($a,b,c\in N$)

Albert1
Messages
1,221
Reaction score
0
$a,b,c \in N$, and the following equation system is given :

$\left\{\begin{matrix}
ab+bc+ca+2(a+b+c)=8045-----(1) & & & & \\
abc-a-b-c=-2-----(2) & & & &
\end{matrix}\right.$

find the value of $a+b+c$
 
Mathematics news on Phys.org
My solution:

Note that $(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1$. Now, substitute what we're given into it, we get $(a+1)(b+1)(c+1)=-2+8045+1=8044=2(2)(2011)$, this implies $(a,\,b,\,c)=(1,\,1,\,2010)$ (up to permutations) and hence $a+b+c=2012$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top