MHB Solve for J and B: Junhao & Bala Stamps Problem

  • Thread starter Thread starter Johnx1
  • Start date Start date
  • Tags Tags
    Fractions
Johnx1
Messages
48
Reaction score
0
Junhao and Bala both collect stamps. 1/3 of Junhao's stamps is equal to 3/5 of Bala's stamps. Junhao has 76 more stamps than Bala. How many stamps does each of them have?

My answer:

Number of stamps Junhao have =J
Number of stamps Bala have = B

We know that Junhao has 76 more stamps than Bala => Junhao = 76 + Bala.

I'm not sure if this is a correct way to do it, but we know 1/3 of Junao's stamp equal to 3/5 of Bala's stamps.
so => (1/3)J = (3/5)BI got stuck and couldn't figure out a clear way to do this.
 
Mathematics news on Phys.org
Johnx said:
Number of stamps Junhao have =J
Number of stamps Bala have = B

We know that Junhao has 76 more stamps than Bala => Junhao = 76 + Bala.

Why don't you change the equation to following using J and B

$$J = 76 + B$$

and you already have the following equation,

$$ \frac{J}{3} = \frac{3B}{5} \implies J = \frac{9B}{5}$$

now you have two unknown variables and two equations. So you can find the values for J and B by substituting the J on the first equation from the second
 
BAdhi said:
$$ \frac{J}{3} = \frac{3B}{5} \implies J = \frac{9B}{5}$$
Thank you for this. I didn't see it this way.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top