MHB Solve for k in System of Equations

Click For Summary
To solve for k in the given system of equations, the determinant of the matrix must be analyzed. A unique solution exists if the determinant is nonzero, while a determinant of zero indicates either no solutions or infinitely many solutions. The discussion suggests two approaches: determining k for an invertible matrix or finding k that results in infinitely many solutions. Participants emphasize the importance of understanding the role of the determinant in these scenarios. Ultimately, the solution hinges on the value of k that satisfies these conditions.
wonguyen1995
Messages
13
Reaction score
0
Find k to have a solution?
x-3y=6
x+3z=-3
2x+kx+(3-k)z=1LATEX
 
Mathematics news on Phys.org
wonguyen1995 said:
Find k to have a solution?
x-3y=6
x+3z=-3
2x+kx+(3-k)z=1LATEX

Have you thought about what role the determinant would play?
 
dwsmith said:
Have you thought about what role the determinant would play?

of course I think it should better if i have sample of solution. i will research carefully on this.
 
wonguyen1995 said:
of course I think it should better if i have sample of solution. i will research carefully on this.

We know the matrix
\[
\begin{bmatrix}
1&-3&0\\
1&0&3\\
2&k&3-k
\end{bmatrix}
\]
has unique solution if the determinant is what?
Second, if the determinant is zero, we have no solutions or infinitely many solutions.

We have two approaches. One assume the determinant is nonzero and find k that makes it invertible or assume the determinant is zero and try to find a k such that we have infinitely many solutions.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
912
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K