MHB Solve for $\overline{abc}:$ $N=3194$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The problem involves finding the three-digit number $\overline{abc}$ such that the sum of the permutations $\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}$ equals 3194. The total sum of these permutations is expressed as $222(a+b+c)$, which must be a multiple of 222 and lie between 3194 and 4194. The valid multiples of 222 in this range are 3330, 3552, 3774, and 3996, corresponding to potential values of $\overline{abc}$. The only solution that satisfies both the sum condition and the digit sum condition is $\overline{abc} = 358$, where $3+5+8 = 16$. Thus, the final answer is $\overline{abc} = 358$.
Albert1
Messages
1,221
Reaction score
0
if $N=\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=3194$ is the sum of five 3-digit numbers
please find :$\overline{abc}$
(here $\overline{abc}$ is also a 3-digit number)
 
Last edited:
Mathematics news on Phys.org
Albert said:
if $N=\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=3194$ is the sum of five 3-digit numbers
please find :$\overline{abc}$
(here $\overline{abc}$ is also a 3-digit number)
[sp]The sum of all six numbers is $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$, so it has to be a multiple of $222$. Also, it has to lie between $3194$ and $4194$. The only multiples of $222$ in that range are $$\begin{aligned} 3330\ &= 15\times 222 \text{, corresponding to } \overline{abc} = 3330 - 3194 = 136, \\ 3552\ &= 16\times 222 \text{, corresponding to } \overline{abc} = 3552 - 3194 =358, \\ 3774\ &= 17\times 222 \text{, corresponding to } \overline{abc} = 3774 - 3194 =580, \\ 3996\ &= 18\times 222 \text{, corresponding to } \overline{abc} = 3996 - 3194 = 802. \end{aligned}$$ Also, the sum $a+b+c$ must be equal to the corresponding multiple of $222$. The only case where this occurs is when $\boxed{\overline{abc} = 358} = 16\times 222$, with $3+5+8 = 16$.[/sp]
 
Last edited:
Opalg said:
[sp]The sum of all six numbers is $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$, so it has to be a multiple of $222$. Also, it has to lie between $3194$ and $4194$. The only multiples of $222$ in that range are $$\begin{aligned} 3330\ &= 15\times 222 \text{, corresponding to } \overline{abc} = 3330 - 3194 = 136, \\ 3552\ &= 16\times 222 \text{, corresponding to } \overline{abc} = 3552 - 3194 =358, \\ 3774\ &= 17\times 222 \text{, corresponding to } \overline{abc} = 3774 - 3194 =580, \\ 3996\ &= 18\times 222 \text{, corresponding to } \overline{abc} = 3996 - 3194 = 136. \end{aligned}$$ Also, the sum $a+b+c$ must be equal to the corresponding multiple of $222$. The only case where this occurs is when $\boxed{\overline{abc} = 358} = 16\times 222$, with $3+5+8 = 16$.[/sp]
very nice solution!
 
Opalg said:
[sp]The sum of all six numbers is $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$, so it has to be a multiple of $222$. Also, it has to lie between $3194$ and $4194$. The only multiples of $222$ in that range are $$\begin{aligned} 3330\ &= 15\times 222 \text{, corresponding to } \overline{abc} = 3330 - 3194 = 136, \\ 3552\ &= 16\times 222 \text{, corresponding to } \overline{abc} = 3552 - 3194 =358, \\ 3774\ &= 17\times 222 \text{, corresponding to } \overline{abc} = 3774 - 3194 =580, \\ 3996\ &= 18\times 222 \text{, corresponding to } \overline{abc} = 3996 - 3194 = 802. \end{aligned}$$ Also, the sum $a+b+c$ must be equal to the corresponding multiple of $222$. The only case where this occurs is when $\boxed{\overline{abc} = 358} = 16\times 222$, with $3+5+8 = 16$.[/sp]

almost same method solved at

 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K