Solve for $\overline{abc}:$ $N=3194$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around solving for the three-digit number $\overline{abc}$ given the equation $N=\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=3194$. Participants explore the relationships between the digits and their permutations, focusing on the mathematical properties of the sums involved.

Discussion Character

  • Mathematical reasoning, Technical explanation, Debate/contested

Main Points Raised

  • Some participants note that the sum of all six permutations must be a multiple of $222$, leading to the equation $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$.
  • It is mentioned that this sum must lie between $3194$ and $4194$, which constrains the possible values for $\overline{abc}$.
  • Participants identify the multiples of $222$ within the specified range: $3330$, $3552$, $3774$, and $3996$, and calculate the corresponding values for $\overline{abc}$ as $136$, $358$, $580$, and $802$, respectively.
  • One participant claims that the only case where the sum of the digits $a+b+c$ equals the corresponding multiple of $222$ occurs when $\overline{abc} = 358$, asserting that $3+5+8 = 16$.
  • Another participant echoes similar calculations and conclusions, reinforcing the identification of $\overline{abc} = 358$ as a solution.
  • There is a note of appreciation for the solution presented, indicating a positive reception of the reasoning process used.

Areas of Agreement / Disagreement

Participants generally agree on the method of finding $\overline{abc}$ and the calculations involved, particularly regarding the multiples of $222$. However, there is no explicit consensus on the uniqueness of the solution, as the discussion does not resolve whether other values could also satisfy the conditions.

Contextual Notes

The discussion does not address potential limitations or assumptions regarding the uniqueness of the solution or the completeness of the analysis of other possible values for $\overline{abc}$.

Albert1
Messages
1,221
Reaction score
0
if $N=\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=3194$ is the sum of five 3-digit numbers
please find :$\overline{abc}$
(here $\overline{abc}$ is also a 3-digit number)
 
Last edited:
Mathematics news on Phys.org
Albert said:
if $N=\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}=3194$ is the sum of five 3-digit numbers
please find :$\overline{abc}$
(here $\overline{abc}$ is also a 3-digit number)
[sp]The sum of all six numbers is $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$, so it has to be a multiple of $222$. Also, it has to lie between $3194$ and $4194$. The only multiples of $222$ in that range are $$\begin{aligned} 3330\ &= 15\times 222 \text{, corresponding to } \overline{abc} = 3330 - 3194 = 136, \\ 3552\ &= 16\times 222 \text{, corresponding to } \overline{abc} = 3552 - 3194 =358, \\ 3774\ &= 17\times 222 \text{, corresponding to } \overline{abc} = 3774 - 3194 =580, \\ 3996\ &= 18\times 222 \text{, corresponding to } \overline{abc} = 3996 - 3194 = 802. \end{aligned}$$ Also, the sum $a+b+c$ must be equal to the corresponding multiple of $222$. The only case where this occurs is when $\boxed{\overline{abc} = 358} = 16\times 222$, with $3+5+8 = 16$.[/sp]
 
Last edited:
Opalg said:
[sp]The sum of all six numbers is $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$, so it has to be a multiple of $222$. Also, it has to lie between $3194$ and $4194$. The only multiples of $222$ in that range are $$\begin{aligned} 3330\ &= 15\times 222 \text{, corresponding to } \overline{abc} = 3330 - 3194 = 136, \\ 3552\ &= 16\times 222 \text{, corresponding to } \overline{abc} = 3552 - 3194 =358, \\ 3774\ &= 17\times 222 \text{, corresponding to } \overline{abc} = 3774 - 3194 =580, \\ 3996\ &= 18\times 222 \text{, corresponding to } \overline{abc} = 3996 - 3194 = 136. \end{aligned}$$ Also, the sum $a+b+c$ must be equal to the corresponding multiple of $222$. The only case where this occurs is when $\boxed{\overline{abc} = 358} = 16\times 222$, with $3+5+8 = 16$.[/sp]
very nice solution!
 
Opalg said:
[sp]The sum of all six numbers is $(100 + 10 + 1)(2a+2b+2c) = 222(a+b+c)$, so it has to be a multiple of $222$. Also, it has to lie between $3194$ and $4194$. The only multiples of $222$ in that range are $$\begin{aligned} 3330\ &= 15\times 222 \text{, corresponding to } \overline{abc} = 3330 - 3194 = 136, \\ 3552\ &= 16\times 222 \text{, corresponding to } \overline{abc} = 3552 - 3194 =358, \\ 3774\ &= 17\times 222 \text{, corresponding to } \overline{abc} = 3774 - 3194 =580, \\ 3996\ &= 18\times 222 \text{, corresponding to } \overline{abc} = 3996 - 3194 = 802. \end{aligned}$$ Also, the sum $a+b+c$ must be equal to the corresponding multiple of $222$. The only case where this occurs is when $\boxed{\overline{abc} = 358} = 16\times 222$, with $3+5+8 = 16$.[/sp]

almost same method solved at

 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K