MHB Solve for Positive Integer Solutions

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
Click For Summary
The discussion focuses on finding positive integer pairs (a, b) such that (a² + b²) / (a - b) is an integer that divides 1995. By setting (a² + b²) = k(a - b) and manipulating the equation, it is established that k must be a factor of 1995 that allows 2k² to be expressed as a sum of two squares. The only suitable factor is 5, leading to the solution (a, b) = (3, 1). Further solutions arise by multiplying this basic solution by other factors of 1995, resulting in eight valid pairs. The final solutions are (3, 1), (9, 3), (21, 7), (57, 19), (63, 21), (171, 57), (399, 133), and (1197, 399).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all values of $(a,\,b)$ where they are positive integers for which $\dfrac{a^2+b^2}{a-b}$ is an integer and divides 1995.
 
Mathematics news on Phys.org
[sp]If $\frac{a^2+b^2}{a-b} = k$, then $a^2+b^2 = k(a-b)$. Multiply by $4$ and complete the square, to get $(2a-k)^2 + (2b+k)^2 = 2k^2.$ We want to find factors $k$ of $1995 = 3\cdot 5\cdot 7 \cdot 19$ such that $2k^2$ is a sum of two squares. Now the only way that a number can be expressed as the sum of two distinct squares is if it has factors congruent to $1$ mod $4$. The only such factor in $1995$ is $5$. If we put $k=5$ then $2k^2 = 50 = 1^2 + 7^2$. Putting $2a-5=1$ and $2b+5 = 7$, we get the solution $(a,b) = (3,1).$ The only other solutions will occur through multiplying this basic solution by another factor of $1995.$ Those factors are $3,7,19,21,57,133$ and $399$. Thus there are eight solutions altogether namely $$(a,b) = (3,1),\ (9,3),\ (21,7),\ (57,19),\ (63,21),\ (171,57),\ (399,133),\ (1197,399).$$[/sp]
 
Bravo, Opalg! (Cool)(Clapping)(Sun) And thanks for participating!:)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K