- #1
- 3
- 0
Dear All,
The bivariate Poisson distribution is as follows,
[tex]
\[ f(y_{s},y_{t})=e^{-(\theta_{s} + \theta_{t}+\theta_{st})}\frac{\theta_{s}^{y_{s}}}{y_{s}!}\frac{\theta_{t}^{y_{t}}}{y_{t}!}
\sum_{k=0}^{min(y_{s},y_{t})} \binom{y_{s}}{k} \binom{y_{t}}{k} k!\left(\frac{\theta_{st}}{\theta_{s} \theta_{t}}\right)^k.\]
[/tex]
Given that [tex] f(y_{s},y_{t}) >= 0 [/tex], solve for [tex] \theta_{st} [/tex].
Many thanks in advance,
George
The bivariate Poisson distribution is as follows,
[tex]
\[ f(y_{s},y_{t})=e^{-(\theta_{s} + \theta_{t}+\theta_{st})}\frac{\theta_{s}^{y_{s}}}{y_{s}!}\frac{\theta_{t}^{y_{t}}}{y_{t}!}
\sum_{k=0}^{min(y_{s},y_{t})} \binom{y_{s}}{k} \binom{y_{t}}{k} k!\left(\frac{\theta_{st}}{\theta_{s} \theta_{t}}\right)^k.\]
[/tex]
Given that [tex] f(y_{s},y_{t}) >= 0 [/tex], solve for [tex] \theta_{st} [/tex].
Many thanks in advance,
George
Last edited: