MHB Solve Integer & Inequality: $x=(x-1)^3$ for $N$

Click For Summary
SUMMARY

The equation \( x = (x - 1)^3 \) leads to the conclusion that there exists an integer \( N \) satisfying the inequality \( -2^{-1000} < x^{2021} - N < 2^{-1000} \). By solving the cubic equation, we find the real solution for \( x \) and subsequently analyze the behavior of \( x^{2021} \). The derived bounds confirm the existence of such an integer \( N \) within the specified range.

PREREQUISITES
  • Understanding of cubic equations and their solutions
  • Familiarity with real number properties
  • Knowledge of inequalities and their manipulation
  • Basic concepts of limits and bounds in mathematical analysis
NEXT STEPS
  • Explore the properties of cubic functions and their graphs
  • Study the implications of real number solutions in polynomial equations
  • Learn about the behavior of exponential functions, particularly \( x^{2021} \)
  • Investigate integer approximation techniques for real numbers
USEFUL FOR

Mathematicians, students studying algebra and inequalities, and anyone interested in polynomial equations and their integer solutions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x$ be a real number such that $x=(x-1)^3$. Show that there exists an integer $N$ such that $-2^{1000}<x^{2021}-N<2^{-1000}$.
 
Mathematics news on Phys.org
anemone said:
Let $x$ be a real number such that $x=(x-1)^3$. Show that there exists an integer $N$ such that $-2^{{\color{red}-}1000}<x^{2021}-N<2^{-1000}$.
We want to find $N$ such that $|x^{2021} - N| < 2^{-1000}$.

Apart from the real root $x\approx 2.3247$, the cubic equation $z = (z-1)^3$ has a pair of conjugate complex solutions, say $\alpha$ and $\overline{\alpha}$. Write the equation as $z^3 - 3z^2 + 2z - 1=0$ to see that $x\alpha\overline{\alpha} = 1$. Since $x>2$ it follows that $|\alpha|^2 = \alpha\overline{\alpha} < \frac12$ and so $|\alpha|<2^{-1/2}$.

For $n\geqslant 1$ let $p_n$ be the sum of the $n$th powers of the roots: $p_n = x^n+\alpha^n + {\overline{\alpha}}^n$. By Newton's identities, $p_1 = 3$, $p_2 = 5$, $p_3 = 12$ and for $n\geqslant4$ $p_n =3 p_{n-1} - 2p_{n-2} + p_{n-3}$. By an easy induction argument, $p_n$ is an integer for all $n$.

Since $p_n = x^n+\alpha^n + {\overline{\alpha}}^n$, it follows that $|x^n-p_n| = |\alpha^n + \overline{\alpha}^n| \leqslant 2|\alpha|^n <2^{1- (n/2)}$.

Now let $N = p_{2021}$ to see that $|x^{2021} - N| < 2^{-1009.5} < 2^{-1000}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K