MHB Solve IVP 2000 #23: Y(0)=A Solution

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
2000
given #23
23p.PNG

so far
23.PNG

I could not get to the W|A solution before applying the y(0)=ahere is the book answer for the rest

23a.PNG
 
Last edited:
Physics news on Phys.org
$e^{-2t/3} y' - \dfrac{2e^{-2t/3}}{3} y = \dfrac{1}{3}e^{-(3\pi+4)t/6}$

$\left(e^{-2t/3} y \right)' = \dfrac{1}{3}e^{-(3\pi+4)t/6}$

$e^{-2t/3} y = -\dfrac{2}{3\pi+4}e^{-(3\pi+4)t/6} + C$

$y = Ce^{2t/3} -\dfrac{2}{3\pi+4}e^{-\pi t/2}$
 
mahalo
noticed there was 430+ views on this one
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K