Jun 17, 2019 #1 karush Gold Member MHB Messages 3,240 Reaction score 5 2000 given #23 so far I could not get to the W|A solution before applying the y(0)=ahere is the book answer for the rest Last edited: Aug 27, 2021
2000 given #23 so far I could not get to the W|A solution before applying the y(0)=ahere is the book answer for the rest
Jun 17, 2019 #2 skeeter Messages 1,103 Reaction score 1 $e^{-2t/3} y' - \dfrac{2e^{-2t/3}}{3} y = \dfrac{1}{3}e^{-(3\pi+4)t/6}$ $\left(e^{-2t/3} y \right)' = \dfrac{1}{3}e^{-(3\pi+4)t/6}$ $e^{-2t/3} y = -\dfrac{2}{3\pi+4}e^{-(3\pi+4)t/6} + C$ $y = Ce^{2t/3} -\dfrac{2}{3\pi+4}e^{-\pi t/2}$
$e^{-2t/3} y' - \dfrac{2e^{-2t/3}}{3} y = \dfrac{1}{3}e^{-(3\pi+4)t/6}$ $\left(e^{-2t/3} y \right)' = \dfrac{1}{3}e^{-(3\pi+4)t/6}$ $e^{-2t/3} y = -\dfrac{2}{3\pi+4}e^{-(3\pi+4)t/6} + C$ $y = Ce^{2t/3} -\dfrac{2}{3\pi+4}e^{-\pi t/2}$
Jun 22, 2019 #3 karush Gold Member MHB Messages 3,240 Reaction score 5 mahalo noticed there was 430+ views on this one