MHB Solve Periodic Problem: Find Function $u \in C^2(\mathbb{R})$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Periodic
AI Thread Summary
The discussion revolves around finding a periodic function $u \in C^2(\mathbb{R})$ that satisfies the equation $-u'' + qu = f$, where $q$ and $f$ are periodic functions. The periodicity condition $u_{i+N+1} = u_i$ is clarified, emphasizing that it ensures the function's values repeat after one full period $(b-a)$. This condition is crucial for maintaining the periodic nature of the function across the defined intervals. The participants confirm that the values of $a$ and $b$ do not need to be set as $0$ and $N+1$, respectively. Overall, the conversation highlights the importance of periodic boundary conditions in solving the differential equation.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Periodic problem

We are looking for a periodic function $u \in C^2(\mathbb{R})$ with period $(b-a)$

$$-u''+qu=f \text{ where } q,f \text{ periodic functions with period } (b-a) \\ u(a)=u(b) \\ u(x)=u(x+(b-a))$$

$x_i=a+ih \\ h=\frac{b-a}{N+1}$

$\mathbb{R}_{\text{per}}^{N+1}=\{ U=(u_i)_{i \in \mathbb{Z}}: u_i \in \mathbb{R} \text{ and } u_{i+N+1}=u_i, i \in \mathbb{Z}\}$

$-\frac{u_{i-1}-2u_i+u_{i+1}}{h^2}+q(x_i) u_i =f(x_i), i=0,1, \dots, N (\star)$

$u_{-1}=u_N \\ u_{N+1}=u_0$

$U=\begin{bmatrix}
u_0\\
u_1\\
\dots\\
\dots\\
u_N
\end{bmatrix}$

$i=0 \overset{\star}{\Rightarrow} -\frac{u_N-2u_0+u_1}{h^2}+q(x_0) u_0=f(x_0)$

$\dots$

$i=1 \overset{\star}{\Rightarrow} -\frac{u_{N-1}-2u_N+u_0}{h^2}+q(x_N) u_N=f(x_N)$
Could you explain to me why we want that $u_{i+N+1}=u_i, i \in \mathbb{Z}$ ?
Do we suppose that $b=N+1$, $a=0$ ? (Thinking)
 
Mathematics news on Phys.org
evinda said:
Could you explain to me why we want that $u_{i+N+1}=u_i, i \in \mathbb{Z}$ ?
Do we suppose that $b=N+1$, $a=0$ ? (Thinking)

Hey evinda! (Smile)

That's because:
$$u_{i+N+1} = u(x_{i+N+1}) = u(a+(i+N+1)h) = u((a+ih) + (N+1)h) = u(x_i+(b-a)) = u(x_i) = u_i$$
(Mmm)

And no, we wouldn't suppose that $b=N+1$, $a=0$. (Shake)
 
I like Serena said:
That's because:
$$u_{i+N+1} = u(x_{i+N+1}) = u(a+(i+N+1)h) = u((a+ih) + (N+1)h) = u(x_i+(b-a)) = u(x_i) = u_i$$
(Mmm)

And no, we wouldn't suppose that $b=N+1$, $a=0$. (Shake)
I understand... Thanks a lot! (Smile)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
5
Views
2K
Replies
1
Views
2K
Replies
125
Views
19K
Replies
9
Views
2K
Replies
10
Views
2K
Back
Top