Solve Repeated Roots ODE: $y' = \begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}y$

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ode Roots
Click For Summary
SUMMARY

The forum discussion focuses on solving the repeated roots ordinary differential equation (ODE) given by $y' = \begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}y$. The characteristic equation is derived as $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0$, leading to the eigenvalues $\lambda_{1,2} = 1$. The general solution is expressed as $y = C_1 e^t\begin{pmatrix} 1\\ 0\end{pmatrix} + C_2\left[te^t\begin{pmatrix} 1\\ 0\end{pmatrix} + e^t\begin{pmatrix} 0\\ \frac{1}{2}\end{pmatrix}\right]$, confirming the correctness of the solution process.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically eigenvalues and eigenvectors.
  • Familiarity with solving ordinary differential equations (ODEs).
  • Knowledge of matrix operations and characteristic equations.
  • Proficiency in applying the method of undetermined coefficients for ODEs.
NEXT STEPS
  • Study the method of solving higher-order linear ODEs with constant coefficients.
  • Learn about the application of the Jordan form in solving systems of ODEs.
  • Explore the implications of repeated eigenvalues on the solution structure of ODEs.
  • Investigate numerical methods for solving ODEs when analytical solutions are not feasible.
USEFUL FOR

Mathematicians, engineers, and students specializing in differential equations, particularly those dealing with systems of linear ODEs and eigenvalue problems.

Dustinsfl
Messages
2,217
Reaction score
5
$y' = \begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}y$
The characteristic equation is
$$
\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0.
$$
So the eigenvalues are $\lambda_{1,2} = 1$.
Solving $(1 - \lambda)y_1 + 2y_2 = 0\iff y_2 = -\dfrac{1}{2}(1 - \lambda)y_1$, we have
$$
y = \begin{pmatrix} 1\\ -\frac{1}{2}(1 - \lambda)\end{pmatrix}.
$$
Then $\mathbf{y_1} = e^t\begin{pmatrix} 1\\ 0\end{pmatrix}$.
To find $\mathbf{y_2}$, let $P = \begin{pmatrix}p_1\\ p_2\end{pmatrix}$.
We must now solve
$$
(A - 1I)P = \begin{pmatrix} 1\\ 0\end{pmatrix}\iff \begin{pmatrix} 0 & 2\\ 0 & 0\end{pmatrix}P = \begin{pmatrix} 1\\ 0\end{pmatrix}.
$$
We are left with the equation $0p_1 + 2p_2 = 1$.
So $p_1 = 0$ and $p_2 = \dfrac{1}{2}$.
Then $\mathbf{y_2} = te^t\begin{pmatrix} 1\\ 0\end{pmatrix} + e^t\begin{pmatrix} 0\\ \frac{1}{2}\end{pmatrix}$.
Thus, the general solution is
$$
y = C_1 e^t\begin{pmatrix} 1\\ 0\end{pmatrix} + C_2\left[te^t\begin{pmatrix} 1\\ 0\end{pmatrix} + e^t\begin{pmatrix} 0\\ \frac{1}{2}\end{pmatrix}\right].
$$

Correct?
 
Physics news on Phys.org
dwsmith said:
$y' = \begin{pmatrix}1 & 2\\ 0 & 1\end{pmatrix}y$
The characteristic equation is
$$
\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0.
$$
So the eigenvalues are $\lambda_{1,2} = 1$.
Solving $(1 - \lambda)y_1 + 2y_2 = 0\iff y_2 = -\dfrac{1}{2}(1 - \lambda)y_1$, we have
$$
y = \begin{pmatrix} 1\\ -\frac{1}{2}(1 - \lambda)\end{pmatrix}.
$$
Then $\mathbf{y_1} = e^t\begin{pmatrix} 1\\ 0\end{pmatrix}$.
To find $\mathbf{y_2}$, let $P = \begin{pmatrix}p_1\\ p_2\end{pmatrix}$.
We must now solve
$$
(A - 1I)P = \begin{pmatrix} 1\\ 0\end{pmatrix}\iff \begin{pmatrix} 0 & 2\\ 0 & 0\end{pmatrix}P = \begin{pmatrix} 1\\ 0\end{pmatrix}.
$$
We are left with the equation $0p_1 + 2p_2 = 1$.
So $p_1 = 0$ and $p_2 = \dfrac{1}{2}$.
Then $\mathbf{y_2} = te^t\begin{pmatrix} 1\\ 0\end{pmatrix} + e^t\begin{pmatrix} 0\\ \frac{1}{2}\end{pmatrix}$.
Thus, the general solution is
$$
y = C_1 e^t\begin{pmatrix} 1\\ 0\end{pmatrix} + C_2\left[te^t\begin{pmatrix} 1\\ 0\end{pmatrix} + e^t\begin{pmatrix} 0\\ \frac{1}{2}\end{pmatrix}\right].
$$

Correct?

I have checked and found nothing wrong. (Yes)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
7K