Solve Root of Equation Q1a: Help Here

  • Context: MHB 
  • Thread starter Thread starter wonguyen1995
  • Start date Start date
  • Tags Tags
    Root
Click For Summary
SUMMARY

The discussion centers on solving the critical points of the function $$c(x)=10-20(e^{-\frac{x}{5}}-e^{-\frac{3x}{4}})$$ by finding where its derivative $$c'(x)$$ equals zero. The critical point is determined to be $$x=\frac{20}{11}\ln \frac{15}{4}$$. To confirm that this point is a minimum, the second derivative $$c''(x)$$ must be evaluated at this critical point, ensuring it is greater than zero. The conversation also touches on the policy of not assisting with graded problems, clarifying that the question pertains to a practice test.

PREREQUISITES
  • Understanding of calculus concepts, specifically derivatives and critical points.
  • Familiarity with exponential functions and their properties.
  • Knowledge of logarithmic identities and their applications in solving equations.
  • Ability to compute second derivatives for concavity tests.
NEXT STEPS
  • Study the process of finding critical points in calculus, focusing on derivative tests.
  • Learn about the application of the second derivative test for determining local minima and maxima.
  • Explore exponential and logarithmic functions in depth, including their derivatives.
  • Review policies regarding academic integrity in forums and educational settings.
USEFUL FOR

Students studying calculus, particularly those preparing for exams or practice tests, as well as educators and tutors looking to understand forum policies on academic assistance.

wonguyen1995
Messages
13
Reaction score
0
View attachment 4507

Can you help me question 1a?
 

Attachments

  • 11692489_896289093777263_6612047441806242256_n.jpg
    11692489_896289093777263_6612047441806242256_n.jpg
    90.6 KB · Views: 88
Mathematics news on Phys.org
$$c(x)=10-20(e^{-\frac{x}{5}}-e^{-\frac{3x}{4}})$$

To find the critical points we have to find the points $x$ such that $c'(x)=0$:

$$c'(x)=20\left ( e^{-\frac{x}{5}}\left ( -\frac{1}{5} \right )-e^{-\frac{3x}{4}}\left ( -\frac{3}{4} \right ) \right )=-4e^{-\frac{x}{5}}+15e^{-\frac{3x}{4}} $$
$$c'(x)=0 \Rightarrow -4e^{-\frac{x}{5}}+15e^{-\frac{3x}{4}}=0 \Rightarrow 4e^{-\frac{x}{5}}=15e^{-\frac{3x}{4}} \\ \Rightarrow \ln \left ( 4e^{-\frac{x}{5}} \right ) =\ln \left ( 15e^{-\frac{3x}{4}} \right ) \Rightarrow \ln 4+ \ln e^{-\frac{x}{5}} =\ln 15+\ln e^{-\frac{3x}{4}} \\ \Rightarrow \ln 4 -\frac{x}{5} =\ln 15-\frac{3x}{4} \Rightarrow \frac{3x}{4}-\frac{x}{5} =\ln 15-\ln 4 \\ \Rightarrow \frac{15x}{20}-\frac{4x}{20} =\ln \frac{15}{4} \Rightarrow \frac{11x}{20} =\ln \frac{15}{4} \\ \Rightarrow x =\frac{20}{11}\ln \frac{15}{4}$$

To show that at this point the function achieves its minimum we have to calculate the second derivative of the function at this point, $c''\left ( \frac{20}{11}\ln \frac{15}{4}\right )$, and it should be $>0$.
 
Is this question part of an exam for credit?
 
Ackbach said:
Is this question part of an exam for credit?

what do you mean?
 
wonguyen1995 said:
what do you mean?

Hi wonguyen1995,

What Ackbach meant was whether the question you posted is a question that you will get marks for. Whether it's part of a graded assignment or an exam given in school?
 
Sudharaka said:
Hi wonguyen1995,

What Ackbach meant was whether the question you posted is a question that you will get marks for. Whether it's part of a graded assignment or an exam given in school?
i know that but i think this question is metaphor
Well forget it
 
wonguyen1995 said:
i know that but i think this question is metaphor
Well forget it

I am not quite sure what you mean. My question was a literal one, not metaphorical. Perhaps your earlier question was a metaphor?

In any case, I'm asking my question because it is against MHB policy knowingly to help with graded problems. Now, if the page you posted is from a practice test, there's no issue at all. But if it's from a graded test, then we will need to close this thread.
 
Ackbach said:
I am not quite sure what you mean. My question was a literal one, not metaphorical. Perhaps your earlier question was a metaphor?

In any case, I'm asking my question because it is against MHB policy knowingly to help with graded problems. Now, if the page you posted is from a practice test, there's no issue at all. But if it's from a graded test, then we will need to close this thread.

Sorry. Maybe i think a lot. it is the practice test in the previous semester. So can you help me figure out one ?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K