MHB Solve Set Theory Question: Prove Iy o f = f

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Let f: A --> B. Prove that Iy o f = f
Here what I've got. Let, x is in X. Then there is a y in Y such that f(x) = y
=> Iy o f = Iy o f(x) = Iy(f(x)) = Iy(y). Please tell me what am I doing wrong in this question and how would you solve this? Thanks.

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
I suppose you meant $f:X\to Y$ instead of $f:A\to B$. Then, simply:
$$\forall x\in X:\quad\left(I_Y\circ f\right)(x)=I_Y\left[f(x)\right]=f(x)$$
which implies $I_Y\circ f=f.$
 
Fernando Revilla said:
I suppose you meant $f:X\to Y$ instead of $f:A\to B$. Then, simply:
$$\forall x\in X:\quad\left(I_Y\circ f\right)(x)=I_Y\left[f(x)\right]=f(x)$$
which implies $I_Y\circ f=f.$
A nice simple little proof. Thank you!

-Dan
 
In general, when presented with two functions:

[math]f:A \to B[/math]
[math]g:A \to B[/math]

to decide whether or not the two functions are equal, we compare their values at every element [math]a \in A[/math]. In other words, we check if, for all such [math]a[/math]:

[math]f(a) = g(a)[/math] in [math]B[/math].

Even a single point of difference is enough to destroy the equality, as in, for example:

[math]f(x) = \frac{x}{x}; x \neq 0, f(0) = 0[/math]
[math]g(x) = 1[/math]

where the domain and co-domain of both functions are the real numbers.
 
Deveno said:
Even a single point of difference is enough to destroy the equality, as in, for example:

Right. However, I'd like to comment that sometimes we generalize the concept of function in some contexts. For example, for $(X,\mathcal{M},\mu)$ measure space and $f,g\in L^p(\mu)$ we need the equivalence relation $f\sim g$ iff $f=g$ almost at every point. So, we can define on the vector space $L^p(\mu)/\sim$ the norm $||f||_p=\left(\int_X|f|^p\right)^{1/p}$. We say that $f=g$ (in this context).
 
Well, sure. If two things aren't "quite equal enough" it's often common practice to "mod out the difference" and use equality of the resulting equivalence classes. It's sort of the raison d'etre of the notion of equivalence: all the properties of equality without the niggling details. For example: 2+2 and 4 are certainly not the same algebraic expression, but they have equivalent evaluations, which we use as if they were the same thing (through a process known as "substitution", or more generally, "representation").

Calculus students do this all the time when they find "the integral" of a function.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top