MHB Solve System Problem: x^4+y^4=8^2 & x-y=2

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    System
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Problem:
Solve the system $x^4+y^4=8^2$ and $x-y=2$.

Attempt:
$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4$

$(x+y)^4=(x^4+y^4)+4xy(x^2+y^2)+6x^2y^2$

$(x+y)^4=8^2+4xy((x-y)^2+2xy)+6x^2y^2$

$(x+y)^4=64+4xy((2)^2+2xy)+6x^2y^2$

$(x+y)^4=64+16xy+14x^2y^2$

Up to this point, I know that I need to form another equation (with $(x+y)^4$ the subject) that has only terms of xy...

$x-y=2$

$(x-y)^2=2^2$

$x^2+y^2-2xy=4$

$(x+y)^2-4xy=4$

$(x+y)^4=(4+4xy)^2=16+32xy+16x^2y^2$

$\therefore 64+16xy+14x^2y^2=16+32xy+16x^2y^2$

$x^2y^2+8xy-24=0$

And by using the quadratic formula to solve for xy, I get:

$\displaystyle xy=\frac{-8 \pm \sqrt {8^2-4(-24)(1)}}{2}=\frac{-8 \pm 4 \sqrt{10}}{2}=-4 \pm 2\sqrt{10}$

I then solve the values for y by multiplying each and every term of the equation $x-y=2$ by y, and obtained another quadratic equation in terms of y and from there, I managed to find all 4 pairs of answers accordingly.

Now, I was wondering if there are any other methods to tackle this problem effectively.

Thanks.
 
Mathematics news on Phys.org
I think you should double-check your answers against the original equation - you might have gained a few spurious solutions. This plot seems to indicate there should only be two solutions. Your solution method is very elegant, I'm not sure I know of a better.
 
Substitute $y=x-2$ in the equation $x^4+y^4 = 8^2$, you get a quartic equation for $x$, namely $x^4+(x-2)^4 = 64$, which simplifies to $x^4 - 4x^3 + 12x^2 - 16x - 24 = 0.$ Looking at Ackbach's plot of the functions, it appears that there are only two real roots for $x$, and it looks as though their sum is very close to $2$. That made me wonder whether the quartic might have a factorisation of the form $x^4 - 4x^3 + 12x^2 - 16x - 24 = (x^2-2x+a)(x^2-2x+b)$. Comparing coefficients, you can check that this is indeed the case, with $a = 4 - 2\sqrt{10}$ and $b = 4 + 2\sqrt{10}$. The first factor has two real roots $x = 1\pm\sqrt{2\sqrt{10}-3}$ (and the second factor has no real roots). So the solutions for $x$ are $\boxed{1\pm\sqrt{2\sqrt{10}-3}}$.

Edit. Since $y = x-2$, the factors $x^2-2x + 4\pm2\sqrt{10}$ above are just another way of writing the factors $xy + 4\pm2\sqrt{10}$ that anemone had already found. So all that was needed was to make that substitution $y = x-2$, and you get two quadratic equations for $x$, one with the two real roots and the other with the two complex roots.
 
Last edited:
Ackbach said:
I think you should double-check your answers against the original equation - you might have gained a few spurious solutions. This plot seems to indicate there should only be two solutions. Your solution method is very elegant, I'm not sure I know of a better.

Ops, I forgot to double-check the answers...thanks for reminding me and that's so nice of you to say that my solution method is elegant...

Thanks, Ackbach!:)

Opalg said:
Substitute $y=x-2$ in the equation $x^4+y^4 = 8^2$, you get a quartic equation for $x$, namely $x^4+(x-2)^4 = 64$, which simplifies to $x^4 - 4x^3 + 12x^2 - 16x - 24 = 0.$ Looking at Ackbach's plot of the functions, it appears that there are only two real roots for $x$, and it looks as though their sum is very close to $2$. That made me wonder whether the quartic might have a factorisation of the form $x^4 - 4x^3 + 12x^2 - 16x - 24 = (x^2-2x+a)(x^2-2x+b)$. Comparing coefficients, you can check that this is indeed the case, with $a = 4 - 2\sqrt{10}$ and $b = 4 + 2\sqrt{10}$. The first factor has two real roots $x = 1\pm\sqrt{2\sqrt{10}-3}$ (and the second factor has no real roots). So the solutions for $x$ are $\boxed{1\pm\sqrt{2\sqrt{10}-3}}$.

Edit. Since $y = x-2$, the factors $x^2-2x + 4\pm2\sqrt{10}$ above are just another way of writing the factors $xy + 4\pm2\sqrt{10}$ that anemone had already found. So all that was needed was to make that substitution $y = x-2$, and you get two quadratic equations for $x$, one with the two real roots and the other with the two complex roots.

Thanks, Opalg! Your approaches to the questions I post here at MHB are always surprisingly insightful to me.(Happy)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top