Solve System Problem: x^4+y^4=8^2 & x-y=2

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    System
Click For Summary

Discussion Overview

The discussion revolves around solving the system of equations given by $x^4+y^4=8^2$ and $x-y=2$. Participants explore various methods for solving this system, including algebraic manipulations and substitutions, while also considering the nature of the solutions.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a method involving the expansion of $(x+y)^4$ and derives a quadratic equation in terms of $xy$, leading to potential solutions for $xy$.
  • Another participant suggests double-checking the solutions against the original equations, indicating the possibility of spurious solutions and noting that there should only be two solutions based on a plot.
  • A different approach is proposed by substituting $y=x-2$ into the original equation, resulting in a quartic equation for $x$. This participant discusses the factorization of the quartic and identifies real roots for $x$.
  • There is a reiteration of the substitution method, emphasizing that it leads to two quadratic equations for $x$, with one yielding real roots and the other yielding complex roots.

Areas of Agreement / Disagreement

Participants express differing views on the number of solutions to the system, with some suggesting there should only be two real solutions while others present methods that yield multiple solutions. The discussion remains unresolved regarding the total number of valid solutions.

Contextual Notes

Some participants note the importance of verifying solutions against the original equations, highlighting the potential for spurious solutions. There are also references to graphical representations that influence the understanding of the solutions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Problem:
Solve the system $x^4+y^4=8^2$ and $x-y=2$.

Attempt:
$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4$

$(x+y)^4=(x^4+y^4)+4xy(x^2+y^2)+6x^2y^2$

$(x+y)^4=8^2+4xy((x-y)^2+2xy)+6x^2y^2$

$(x+y)^4=64+4xy((2)^2+2xy)+6x^2y^2$

$(x+y)^4=64+16xy+14x^2y^2$

Up to this point, I know that I need to form another equation (with $(x+y)^4$ the subject) that has only terms of xy...

$x-y=2$

$(x-y)^2=2^2$

$x^2+y^2-2xy=4$

$(x+y)^2-4xy=4$

$(x+y)^4=(4+4xy)^2=16+32xy+16x^2y^2$

$\therefore 64+16xy+14x^2y^2=16+32xy+16x^2y^2$

$x^2y^2+8xy-24=0$

And by using the quadratic formula to solve for xy, I get:

$\displaystyle xy=\frac{-8 \pm \sqrt {8^2-4(-24)(1)}}{2}=\frac{-8 \pm 4 \sqrt{10}}{2}=-4 \pm 2\sqrt{10}$

I then solve the values for y by multiplying each and every term of the equation $x-y=2$ by y, and obtained another quadratic equation in terms of y and from there, I managed to find all 4 pairs of answers accordingly.

Now, I was wondering if there are any other methods to tackle this problem effectively.

Thanks.
 
Mathematics news on Phys.org
I think you should double-check your answers against the original equation - you might have gained a few spurious solutions. This plot seems to indicate there should only be two solutions. Your solution method is very elegant, I'm not sure I know of a better.
 
Substitute $y=x-2$ in the equation $x^4+y^4 = 8^2$, you get a quartic equation for $x$, namely $x^4+(x-2)^4 = 64$, which simplifies to $x^4 - 4x^3 + 12x^2 - 16x - 24 = 0.$ Looking at Ackbach's plot of the functions, it appears that there are only two real roots for $x$, and it looks as though their sum is very close to $2$. That made me wonder whether the quartic might have a factorisation of the form $x^4 - 4x^3 + 12x^2 - 16x - 24 = (x^2-2x+a)(x^2-2x+b)$. Comparing coefficients, you can check that this is indeed the case, with $a = 4 - 2\sqrt{10}$ and $b = 4 + 2\sqrt{10}$. The first factor has two real roots $x = 1\pm\sqrt{2\sqrt{10}-3}$ (and the second factor has no real roots). So the solutions for $x$ are $\boxed{1\pm\sqrt{2\sqrt{10}-3}}$.

Edit. Since $y = x-2$, the factors $x^2-2x + 4\pm2\sqrt{10}$ above are just another way of writing the factors $xy + 4\pm2\sqrt{10}$ that anemone had already found. So all that was needed was to make that substitution $y = x-2$, and you get two quadratic equations for $x$, one with the two real roots and the other with the two complex roots.
 
Last edited:
Ackbach said:
I think you should double-check your answers against the original equation - you might have gained a few spurious solutions. This plot seems to indicate there should only be two solutions. Your solution method is very elegant, I'm not sure I know of a better.

Ops, I forgot to double-check the answers...thanks for reminding me and that's so nice of you to say that my solution method is elegant...

Thanks, Ackbach!:)

Opalg said:
Substitute $y=x-2$ in the equation $x^4+y^4 = 8^2$, you get a quartic equation for $x$, namely $x^4+(x-2)^4 = 64$, which simplifies to $x^4 - 4x^3 + 12x^2 - 16x - 24 = 0.$ Looking at Ackbach's plot of the functions, it appears that there are only two real roots for $x$, and it looks as though their sum is very close to $2$. That made me wonder whether the quartic might have a factorisation of the form $x^4 - 4x^3 + 12x^2 - 16x - 24 = (x^2-2x+a)(x^2-2x+b)$. Comparing coefficients, you can check that this is indeed the case, with $a = 4 - 2\sqrt{10}$ and $b = 4 + 2\sqrt{10}$. The first factor has two real roots $x = 1\pm\sqrt{2\sqrt{10}-3}$ (and the second factor has no real roots). So the solutions for $x$ are $\boxed{1\pm\sqrt{2\sqrt{10}-3}}$.

Edit. Since $y = x-2$, the factors $x^2-2x + 4\pm2\sqrt{10}$ above are just another way of writing the factors $xy + 4\pm2\sqrt{10}$ that anemone had already found. So all that was needed was to make that substitution $y = x-2$, and you get two quadratic equations for $x$, one with the two real roots and the other with the two complex roots.

Thanks, Opalg! Your approaches to the questions I post here at MHB are always surprisingly insightful to me.(Happy)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K