MHB Solve the Equation involving $4^{\sqrt{log_2 x}}$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The equation $4^{\sqrt{\log_2 x}} \cdot 4^{\sqrt{\log_2 \frac{y}{2}}} \cdot 4^{\sqrt{\log_2 \frac{z}{4}}} \cdot 4^{\sqrt{\log_2 \frac{t}{2}}} = xyzt$ is analyzed to find real solutions for variables x, y, z, and t. The transformations lead to expressions relating each variable to constants a, b, c, and d, which are constrained within specific ranges. The derived equations for each variable yield forms that depend on the logarithmic relationships with a, b, c, and d. Ultimately, the conditions imply that if the product $a \cdot b \cdot c \cdot d = 1$, the specific values of x, y, z, and t can be determined as $x = 2$, $y = 4$, $z = 8$, and $t = 4$. The solution highlights the interplay between logarithmic functions and algebraic manipulation in solving complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the real solution to the equation $4^{\sqrt{log_2 x}} \cdot 4^{\sqrt{log_2 \tiny \dfrac{y}{2}}}\cdot 4^{\sqrt{log_2 \tiny \dfrac{z}{4}}}\cdot 4^{\sqrt{log_2 \tiny \dfrac{t}{2}}}=xyzt$.
 
Mathematics news on Phys.org
## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = x y z t ##

## ( a , b , c , d ) \in \{ ( e , f , g , h ) | ( e , f , g , h ) \in \mathbb R ^ 4 \wedge e \cdot f \cdot g \cdot h = 1 \} ##

## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = a b c d \cdot x y z t ##
## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = a x \cdot b y \cdot c z \cdot d t ##

## 4 ^ \sqrt { \log_2 x } = a x ##
## \sqrt { \log_2 x } \cdot \log_2 4 = \log_2 ( a x ) ##
## 2 \sqrt { \log_2 x } = \log_2 a + \log_2 x ##
## \log_2 x - 2 \sqrt { \log_2 x } + \log_2 a = 0 ##
## \sqrt { \log_2 x } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 a } } { 2 } ##
## \sqrt { \log_2 x } = 1 \pm \sqrt { 1 – \log_2 a } ##
## \log_2 x = 1 \pm 2 \sqrt { 1 – \log_2 a } + 1 - \log_2 a ##
## x = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 a } - \log_2 a } ##
## x = \frac 1 a \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 a } } \wedge 0 \lt a \leq 2 ##

## 4 ^ \sqrt { \log_2 \frac y 2 } = b y ##
## \sqrt { \log_2 \frac y 2 } \cdot \log_2 4 = \log_2 ( b y ) ##
## 2 \sqrt { \log_2 \frac y 2 } = \log_2 b + \log_2 y ##
## \log_2 y - 2 \sqrt { \log_2 \frac y 2 } + \log_2 b = 0 ##
## y_1 = \frac y 2 ##
## \log_2 y_1 - 2 \sqrt { \log_2 y_1 } + \log_2 ( 2 b ) = 0 ##
## \sqrt { \log_2 y_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 2 b ) } } { 2 } ##
## \sqrt { \log_2 y_1 } = 1 \pm \sqrt { 1 – \log_2 ( 2 b ) } ##
## \log_2 y_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 2 b ) } + 1 - \log_2 ( 2 b ) ##
## y_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 2 b ) } - \log_2 ( 2 b ) } ##
## y_1 = \frac { 1 } { 2 b } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 2 b ) } } ##
## y = \frac 1 b \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 2 b ) } } \wedge 0 \lt b \leq 1 ##

## 4 ^ \sqrt { \log_2 \frac z 4 } = c z ##
## \sqrt { \log_2 \frac z 4 } \cdot \log_2 4 = \log_2 ( c z ) ##
## 2 \sqrt { \log_2 \frac z 4 } = \log_2 c + \log_2 z ##
## \log_2 z - 2 \sqrt { \log_2 \frac z 4 } + \log_2 c = 0 ##
## z_1 = \frac z 4 ##
## \log_2 z_1 - 2 \sqrt { \log_2 z_1 } + \log_2 ( 4 c ) = 0 ##
## \sqrt { \log_2 z_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 4 c ) } } { 2 } ##
## \sqrt { \log_2 z_1 } = 1 \pm \sqrt { 1 – \log_2 ( 4 c ) } ##
## \log_2 z_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 4 c ) } + 1 - \log_2 ( 4 c ) ##
## z_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 4 c ) } - \log_2 ( 4 c ) } ##
## z_1 = \frac { 1 } { 4 c } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 4 c ) } } ##
## z = \frac 1 c \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 4 c ) } } \wedge 0 \lt c \leq \frac 1 2 ##

## 4 ^ \sqrt { \log_2 \frac t 2 } = d t ##
## \sqrt { \log_2 \frac t 2 } \cdot \log_2 4 = \log_2 ( d t ) ##
## 2 \sqrt { \log_2 \frac t 2 } = \log_2 d + \log_2 t ##
## \log_2 t - 2 \sqrt { \log_2 \frac t 2 } + \log_2 d = 0 ##
## t_1 = \frac t 2 ##
## \log_2 t_1 - 2 \sqrt { \log_2 t_1 } + \log_2 ( 2 d ) = 0 ##
## \sqrt { \log_2 t_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 2 d ) } } { 2 } ##
## \sqrt { \log_2 t_1 } = 1 \pm \sqrt { 1 – \log_2 ( 2 d ) } ##
## \log_2 t_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 2 d ) } + 1 - \log_2 ( 2 d ) ##
## t_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 2 d ) } - \log_2 ( 2 d ) } ##
## t_1 = \frac { 1 } { 2 d } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 2 d ) } } ##
## t = \frac 1 d \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 2 d ) } } \wedge 0 \lt d \leq 1 ##

## ( 0 \lt a \leq 2 \wedge 0 \lt b \leq 1 \wedge 0 \lt c \leq \frac 1 2 \wedge 0 \lt d \leq 1 ) \Rightarrow 0 \lt a \cdot b \cdot c \cdot d \leq 1 ##
## a \cdot b \cdot c \cdot d = 1 \Rightarrow (a = 2 \wedge b = 1 \wedge c = \frac 1 2 \wedge d = 1) \Rightarrow x = 2 \wedge y = 4 \wedge z = 8 \wedge t = 4 ##
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
978
Replies
7
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
7
Views
1K