MHB Solve the Equation involving $4^{\sqrt{log_2 x}}$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The equation $4^{\sqrt{\log_2 x}} \cdot 4^{\sqrt{\log_2 \frac{y}{2}}} \cdot 4^{\sqrt{\log_2 \frac{z}{4}}} \cdot 4^{\sqrt{\log_2 \frac{t}{2}}} = xyzt$ is analyzed to find real solutions for variables x, y, z, and t. The transformations lead to expressions relating each variable to constants a, b, c, and d, which are constrained within specific ranges. The derived equations for each variable yield forms that depend on the logarithmic relationships with a, b, c, and d. Ultimately, the conditions imply that if the product $a \cdot b \cdot c \cdot d = 1$, the specific values of x, y, z, and t can be determined as $x = 2$, $y = 4$, $z = 8$, and $t = 4$. The solution highlights the interplay between logarithmic functions and algebraic manipulation in solving complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the real solution to the equation $4^{\sqrt{log_2 x}} \cdot 4^{\sqrt{log_2 \tiny \dfrac{y}{2}}}\cdot 4^{\sqrt{log_2 \tiny \dfrac{z}{4}}}\cdot 4^{\sqrt{log_2 \tiny \dfrac{t}{2}}}=xyzt$.
 
Mathematics news on Phys.org
## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = x y z t ##

## ( a , b , c , d ) \in \{ ( e , f , g , h ) | ( e , f , g , h ) \in \mathbb R ^ 4 \wedge e \cdot f \cdot g \cdot h = 1 \} ##

## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = a b c d \cdot x y z t ##
## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = a x \cdot b y \cdot c z \cdot d t ##

## 4 ^ \sqrt { \log_2 x } = a x ##
## \sqrt { \log_2 x } \cdot \log_2 4 = \log_2 ( a x ) ##
## 2 \sqrt { \log_2 x } = \log_2 a + \log_2 x ##
## \log_2 x - 2 \sqrt { \log_2 x } + \log_2 a = 0 ##
## \sqrt { \log_2 x } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 a } } { 2 } ##
## \sqrt { \log_2 x } = 1 \pm \sqrt { 1 – \log_2 a } ##
## \log_2 x = 1 \pm 2 \sqrt { 1 – \log_2 a } + 1 - \log_2 a ##
## x = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 a } - \log_2 a } ##
## x = \frac 1 a \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 a } } \wedge 0 \lt a \leq 2 ##

## 4 ^ \sqrt { \log_2 \frac y 2 } = b y ##
## \sqrt { \log_2 \frac y 2 } \cdot \log_2 4 = \log_2 ( b y ) ##
## 2 \sqrt { \log_2 \frac y 2 } = \log_2 b + \log_2 y ##
## \log_2 y - 2 \sqrt { \log_2 \frac y 2 } + \log_2 b = 0 ##
## y_1 = \frac y 2 ##
## \log_2 y_1 - 2 \sqrt { \log_2 y_1 } + \log_2 ( 2 b ) = 0 ##
## \sqrt { \log_2 y_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 2 b ) } } { 2 } ##
## \sqrt { \log_2 y_1 } = 1 \pm \sqrt { 1 – \log_2 ( 2 b ) } ##
## \log_2 y_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 2 b ) } + 1 - \log_2 ( 2 b ) ##
## y_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 2 b ) } - \log_2 ( 2 b ) } ##
## y_1 = \frac { 1 } { 2 b } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 2 b ) } } ##
## y = \frac 1 b \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 2 b ) } } \wedge 0 \lt b \leq 1 ##

## 4 ^ \sqrt { \log_2 \frac z 4 } = c z ##
## \sqrt { \log_2 \frac z 4 } \cdot \log_2 4 = \log_2 ( c z ) ##
## 2 \sqrt { \log_2 \frac z 4 } = \log_2 c + \log_2 z ##
## \log_2 z - 2 \sqrt { \log_2 \frac z 4 } + \log_2 c = 0 ##
## z_1 = \frac z 4 ##
## \log_2 z_1 - 2 \sqrt { \log_2 z_1 } + \log_2 ( 4 c ) = 0 ##
## \sqrt { \log_2 z_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 4 c ) } } { 2 } ##
## \sqrt { \log_2 z_1 } = 1 \pm \sqrt { 1 – \log_2 ( 4 c ) } ##
## \log_2 z_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 4 c ) } + 1 - \log_2 ( 4 c ) ##
## z_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 4 c ) } - \log_2 ( 4 c ) } ##
## z_1 = \frac { 1 } { 4 c } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 4 c ) } } ##
## z = \frac 1 c \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 4 c ) } } \wedge 0 \lt c \leq \frac 1 2 ##

## 4 ^ \sqrt { \log_2 \frac t 2 } = d t ##
## \sqrt { \log_2 \frac t 2 } \cdot \log_2 4 = \log_2 ( d t ) ##
## 2 \sqrt { \log_2 \frac t 2 } = \log_2 d + \log_2 t ##
## \log_2 t - 2 \sqrt { \log_2 \frac t 2 } + \log_2 d = 0 ##
## t_1 = \frac t 2 ##
## \log_2 t_1 - 2 \sqrt { \log_2 t_1 } + \log_2 ( 2 d ) = 0 ##
## \sqrt { \log_2 t_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 2 d ) } } { 2 } ##
## \sqrt { \log_2 t_1 } = 1 \pm \sqrt { 1 – \log_2 ( 2 d ) } ##
## \log_2 t_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 2 d ) } + 1 - \log_2 ( 2 d ) ##
## t_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 2 d ) } - \log_2 ( 2 d ) } ##
## t_1 = \frac { 1 } { 2 d } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 2 d ) } } ##
## t = \frac 1 d \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 2 d ) } } \wedge 0 \lt d \leq 1 ##

## ( 0 \lt a \leq 2 \wedge 0 \lt b \leq 1 \wedge 0 \lt c \leq \frac 1 2 \wedge 0 \lt d \leq 1 ) \Rightarrow 0 \lt a \cdot b \cdot c \cdot d \leq 1 ##
## a \cdot b \cdot c \cdot d = 1 \Rightarrow (a = 2 \wedge b = 1 \wedge c = \frac 1 2 \wedge d = 1) \Rightarrow x = 2 \wedge y = 4 \wedge z = 8 \wedge t = 4 ##
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K