MHB Solve the Equation involving $4^{\sqrt{log_2 x}}$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The equation $4^{\sqrt{\log_2 x}} \cdot 4^{\sqrt{\log_2 \frac{y}{2}}} \cdot 4^{\sqrt{\log_2 \frac{z}{4}}} \cdot 4^{\sqrt{\log_2 \frac{t}{2}}} = xyzt$ is analyzed to find real solutions for variables x, y, z, and t. The transformations lead to expressions relating each variable to constants a, b, c, and d, which are constrained within specific ranges. The derived equations for each variable yield forms that depend on the logarithmic relationships with a, b, c, and d. Ultimately, the conditions imply that if the product $a \cdot b \cdot c \cdot d = 1$, the specific values of x, y, z, and t can be determined as $x = 2$, $y = 4$, $z = 8$, and $t = 4$. The solution highlights the interplay between logarithmic functions and algebraic manipulation in solving complex equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the real solution to the equation $4^{\sqrt{log_2 x}} \cdot 4^{\sqrt{log_2 \tiny \dfrac{y}{2}}}\cdot 4^{\sqrt{log_2 \tiny \dfrac{z}{4}}}\cdot 4^{\sqrt{log_2 \tiny \dfrac{t}{2}}}=xyzt$.
 
Mathematics news on Phys.org
## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = x y z t ##

## ( a , b , c , d ) \in \{ ( e , f , g , h ) | ( e , f , g , h ) \in \mathbb R ^ 4 \wedge e \cdot f \cdot g \cdot h = 1 \} ##

## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = a b c d \cdot x y z t ##
## 4 ^ \sqrt { \log_2 x } \cdot 4 ^ \sqrt { \log_2 \frac y 2 } \cdot 4 ^ \sqrt { \log_2 \frac z 4 } \cdot 4 ^ \sqrt { \log_2 \frac t 2 } = a x \cdot b y \cdot c z \cdot d t ##

## 4 ^ \sqrt { \log_2 x } = a x ##
## \sqrt { \log_2 x } \cdot \log_2 4 = \log_2 ( a x ) ##
## 2 \sqrt { \log_2 x } = \log_2 a + \log_2 x ##
## \log_2 x - 2 \sqrt { \log_2 x } + \log_2 a = 0 ##
## \sqrt { \log_2 x } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 a } } { 2 } ##
## \sqrt { \log_2 x } = 1 \pm \sqrt { 1 – \log_2 a } ##
## \log_2 x = 1 \pm 2 \sqrt { 1 – \log_2 a } + 1 - \log_2 a ##
## x = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 a } - \log_2 a } ##
## x = \frac 1 a \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 a } } \wedge 0 \lt a \leq 2 ##

## 4 ^ \sqrt { \log_2 \frac y 2 } = b y ##
## \sqrt { \log_2 \frac y 2 } \cdot \log_2 4 = \log_2 ( b y ) ##
## 2 \sqrt { \log_2 \frac y 2 } = \log_2 b + \log_2 y ##
## \log_2 y - 2 \sqrt { \log_2 \frac y 2 } + \log_2 b = 0 ##
## y_1 = \frac y 2 ##
## \log_2 y_1 - 2 \sqrt { \log_2 y_1 } + \log_2 ( 2 b ) = 0 ##
## \sqrt { \log_2 y_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 2 b ) } } { 2 } ##
## \sqrt { \log_2 y_1 } = 1 \pm \sqrt { 1 – \log_2 ( 2 b ) } ##
## \log_2 y_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 2 b ) } + 1 - \log_2 ( 2 b ) ##
## y_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 2 b ) } - \log_2 ( 2 b ) } ##
## y_1 = \frac { 1 } { 2 b } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 2 b ) } } ##
## y = \frac 1 b \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 2 b ) } } \wedge 0 \lt b \leq 1 ##

## 4 ^ \sqrt { \log_2 \frac z 4 } = c z ##
## \sqrt { \log_2 \frac z 4 } \cdot \log_2 4 = \log_2 ( c z ) ##
## 2 \sqrt { \log_2 \frac z 4 } = \log_2 c + \log_2 z ##
## \log_2 z - 2 \sqrt { \log_2 \frac z 4 } + \log_2 c = 0 ##
## z_1 = \frac z 4 ##
## \log_2 z_1 - 2 \sqrt { \log_2 z_1 } + \log_2 ( 4 c ) = 0 ##
## \sqrt { \log_2 z_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 4 c ) } } { 2 } ##
## \sqrt { \log_2 z_1 } = 1 \pm \sqrt { 1 – \log_2 ( 4 c ) } ##
## \log_2 z_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 4 c ) } + 1 - \log_2 ( 4 c ) ##
## z_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 4 c ) } - \log_2 ( 4 c ) } ##
## z_1 = \frac { 1 } { 4 c } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 4 c ) } } ##
## z = \frac 1 c \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 4 c ) } } \wedge 0 \lt c \leq \frac 1 2 ##

## 4 ^ \sqrt { \log_2 \frac t 2 } = d t ##
## \sqrt { \log_2 \frac t 2 } \cdot \log_2 4 = \log_2 ( d t ) ##
## 2 \sqrt { \log_2 \frac t 2 } = \log_2 d + \log_2 t ##
## \log_2 t - 2 \sqrt { \log_2 \frac t 2 } + \log_2 d = 0 ##
## t_1 = \frac t 2 ##
## \log_2 t_1 - 2 \sqrt { \log_2 t_1 } + \log_2 ( 2 d ) = 0 ##
## \sqrt { \log_2 t_1 } = \frac { 2 \pm \sqrt { 4 – 4 \log_2 ( 2 d ) } } { 2 } ##
## \sqrt { \log_2 t_1 } = 1 \pm \sqrt { 1 – \log_2 ( 2 d ) } ##
## \log_2 t_1 = 1 \pm 2 \sqrt { 1 – \log_2 ( 2 d ) } + 1 - \log_2 ( 2 d ) ##
## t_1 = 2 ^ { 2 \pm 2 \sqrt { 1 – \log_2 ( 2 d ) } - \log_2 ( 2 d ) } ##
## t_1 = \frac { 1 } { 2 d } \cdot 4 ^ { 1 \pm \sqrt {1 – \log_2 ( 2 d ) } } ##
## t = \frac 1 d \cdot 4 ^ { 1 \pm \sqrt { 1 – \log_2 ( 2 d ) } } \wedge 0 \lt d \leq 1 ##

## ( 0 \lt a \leq 2 \wedge 0 \lt b \leq 1 \wedge 0 \lt c \leq \frac 1 2 \wedge 0 \lt d \leq 1 ) \Rightarrow 0 \lt a \cdot b \cdot c \cdot d \leq 1 ##
## a \cdot b \cdot c \cdot d = 1 \Rightarrow (a = 2 \wedge b = 1 \wedge c = \frac 1 2 \wedge d = 1) \Rightarrow x = 2 \wedge y = 4 \wedge z = 8 \wedge t = 4 ##
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
966
Replies
7
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
7
Views
1K
Back
Top