- #1
chwala
Gold Member
- 2,712
- 376
- Homework Statement
- See attached
- Relevant Equations
- sum/product
For part (i),
##(x-α)(x-β)=x^2-(α+β)x+αβ##
##α+β = p## and ##αβ=-c##
therefore,##α^3+β^3=(α+β)^3-3αβ(α+β)##
=##p^3+3cp##
=##p(p^2+3c)##
For part (ii),
We know that; ##tan^{-1} x+tan^{-1} y##=##tan^{-1}\left[\dfrac {tan^{-1} x+tan^{-1} y}{1-tan^{-1} x⋅tan^{-1} y}\right]## then it follows that,
##tan^{-1}\left[ \frac {x}{c}\right]+tan^{-1} x##=##tan^{-1}\left[\dfrac {\dfrac{x}{c} + x}{1- \frac{x}{c}⋅ x}\right]##
We now have;
##tan^{-1}\left[\dfrac {\dfrac{x}{c} + x}{1- \frac{x}{c}⋅ x}\right]##=## tan^{-1}c##
##\left[\dfrac {\dfrac{x}{c} + x}{1- \frac{x}{c}⋅ x}\right]##=##c##
##\left[\dfrac {\dfrac{x}{c} + x}{1- \frac{x^2}{c}}\right]##=##c##
##\dfrac {x}{c}##+##x##=##c####(1##-##\dfrac{x^2}{c})##...from this we get,
##x^2+(\dfrac {1}{c}+1)x-c=0##
We know that, ##α+β = p## and ##αβ=-c##
it follows that
##-(β+α)##=##\frac {1}{c}+1## and ##αβ=-c##
then using,
##-(β+α)##=##\dfrac {1}{c}+1##
##-(β+α)##=##\dfrac {1+c}{c}##
##-p##=##\dfrac {1+c}{c}##
##-pc=1+c##
##⇒pc+c+1=0## Bingo,
I would appreciate any feedback on my steps...as i do not have markscheme or rather the solutions. Cheers guys.
Last edited: