MHB Solve Trigonometric Inequality 5x≤8sinx−sin2x≤6x

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show, that

$5x \le 8\sin x - \sin 2x \le 6x$ for $0 \le x \le \frac{\pi}{3}$.
 
Mathematics news on Phys.org
Hint:

If $f(x) = 8\sin x - \sin 2x$, show that $5 \le f'(x) \le 6$ on $[0;\frac{\pi}{3}]$.
 
Suggested solution:
Let
\[f(x) = 8 \sin x - \sin 2x \\\\ f'(x) = 8 \cos x - 2 \cos 2x \\\\ f''(x) = -8 \sin x +4 \sin 2x = -8 \sin x(1- \cos x)\]

From these we see $f'(0) = 6, f'(\pi/3) = 5, f(0) = 0$ and $f''(x) \leq 0$ on $[0;\pi/3].$

Hence, $5\leq f'(x) \leq 6$ on $[0;\pi/3].$

Integrating from $0$ to $x$ gives

\[5x \leq f(x) \leq 6x.\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top