MHB Solve Trigonometry Challenge: $\cos^k x-\sin^k x=1$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\cos^k x-\sin^k x=1$, where $k$ is a given positive integer.
 
Mathematics news on Phys.org
anemone said:
Solve the equation $\cos^k x-\sin^k x=1$, where $k$ is a given positive integer.

partial solution easy part(there is a difficult part also)

for k even.

only solution

$\cos^k x=1$
$\sin^k x=0$

so
$\sin\, x=0$ and $\cos\, x=\pm 1$ hence $x = n\pi$

k is odd

there are 3 cases

case 1)
$\cos\ x=1$
$\sin\ x=0$

this case is a subset of above case $x = 2n\pi$

case 2)
$\cos\ x=0$
$\sin\ x=-1$

giving $x = (2n-\dfrac{1}{2})\pi$

case 3)
$\cos\ x$, $\sin\ x$ are non integers

This is the difficult part(remaining )
 
Last edited:
anemone said:
Solve the equation $\cos^k x-\sin^k x=1$, where $k$ is a given positive integer.
[sp]
Let $f_k(x) = \cos^k x-\sin^k x$. This is periodic, with period $2\pi$, so it will be sufficient to find solutions of $f_k(x) = 1$ in the interval $x\in [0,2\pi).$

If $k=1$ then $f_1(x) = \cos x - \sin x = \sqrt2\cos\bigl(x + \frac\pi4\bigr)$. That takes the value $1$ when $\cos\bigl(x + \frac\pi4\bigr) = \frac1{\sqrt2}$, in other words $x + \frac\pi4 = \frac\pi4 \text{ or }\frac{7\pi}4.$ Thus the solutions to $f_1(x) = 1$ are $x=0,\frac{3\pi}2.$

The case $k=1$ is anomalous, because that is the only value of $k$ for which $|\,f_k(x)|$ can ever be greater than $1$. One way to see this is by calculus, using the method of Lagrange multipliers. Suppose that $k\geqslant2$. If we let $u = \cos x$ and $v = \sin x$, then we want to find the extreme values of $u^k - v^k$ subject to the constraint $u^2+v^2 = 1$. The Lagrange method gives the equations $$ku^{k-1} - 2\lambda u = 0, \qquad -kv^{k-1} - 2\lambda v = 0.$$ Therefore either $u=0$ or $u^{k-2} = \frac{2\lambda}k$, and similarly either $v=0$ or $v^{k-2} = -\frac{2\lambda}k$. Combining those values with the fact that $u^2+v^2=1$, it follows that if $u=0$ then $v = \pm1$, and if $v=0$ then $u = \pm1$. If both $u$ and $v$ are nonzero then $u^{k-2} = -v^{k-2}$. In the case when $k$ is odd, the $(k-2)$-th roots are unique and it follows that $u=-v$, so that $(u,v) = \pm\bigl(\frac1{\sqrt2},-\frac1{\sqrt2}\bigr)$. But when $k$ is even there are two (real) $(k-2)$-th roots, so there is the additional possibility that $u=v=\pm\frac1{\sqrt2}$.

This shows that the only possible extreme values of $(u,v)$ are $(\pm1,0)$, $(0,\pm1)$ and $\bigl(\pm\frac1{\sqrt2}, \pm\frac1{\sqrt2}\bigr)$. In terms of $x$, with $(u,v) = (\cos x,\sin x)$, this means that the only extreme values of $f_k(x)$ must occur when $x$ is a multiple of $\frac\pi4$. It is easy to check that $|\,f_k(x)| \leqslant1$ at all those points (and hence everywhere), and that the only points in $[0,2\pi)$ where $f_k(x) =1$ are $x=0$, together with $x=\pi$ (if $k$ is even) and $x = \frac{3\pi}2$ (if $k$ is odd). So the solutions found by kaliprasad are the only ones.
[/sp]
 
Last edited:
Thank you Kali (for your partial solution) and Opalg for your solution that complements Kali's!

I can't wait any longer to share the other solution that I found somewhere online and I certainly hope you like the method used to solve it as much as I do:

For $k\ge 2$, we have

$1=\cos^k x-\sin^k x \le |cos^k x-\sin^k x|\le |\cos^k x|+|\sin^k x| \le \cos ^2 x+\sin^2 x=1$

Hence, $\sin^2 x=|\sin^k x|$ and $\cos^2 x=|\cos^k x|$, from which it follows that $\sin x,\,\cos x\in\{1,\,0,\,-1\}\implies x\in\dfrac{\pi Z}{2}$. By inspection one obtains the set of solutions

$\{n\pi,\, n\in Z\}$ for even $k$ and $\{2n\pi,\,2n\pi-\dfrac{\pi}{2},\,n\in Z\}$ for odd $k$.

For $k=1$, we have $1=\cos x-\sin x=-\sqrt{2}\sin\left(x-\dfrac{\pi}{4}\right)$ which yields the set of solutions $\{2n\pi,\,2n\pi-\dfrac{\pi}{2},\,n\in Z\}$.

Therefore, the solutions to the given equation is $\{n\pi,\,2n\pi-\dfrac{\pi}{2},\,n\in Z\}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top