MHB Solve twice differentiable function

i_a_n
Messages
78
Reaction score
0
Let $u:\mathbb{R}^n\rightarrow \mathbb{R}$ be a twice differentiable function. The 2-dimensional wave equation is
$\frac{\partial ^2u}{\partial x^2}=\frac{\partial ^2u}{\partial t^2}$, where $(x,t)$ are coordinates on $\mathbb{R}^2$. Prove that if $f,g:\mathbb{R}\rightarrow \mathbb{R}$ are twice di erentiable functions, then $u(x,t) = f(x-t) + g(x+t)$ solves the 2-dimensional wave equation. Use this fact, or another, to solve the Boundary-Value problem where
$u(s,0) = sin(s) + cos(s)$ , $u(0,s) = -sin(s) + cos(s)$ , $\forall s\in \mathbb{R}$.
 
Physics news on Phys.org
Our helpers will really have no idea where you need help when you simply post a problem with no work shown.

I have messaged you about this, and reminded you in a previous topic that our helpers are not here to do the problems, but rather to help you do the problem, and when you do not indicate what you have tried, they really cannot effectively help.

Even if you state that you have no idea even how to begin the problem, this at least let's us know something and gives the helpers a place to begin.

Can you post your work so our helpers have somewhere to begin?
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top