MHB Solve twice differentiable function

i_a_n
Messages
78
Reaction score
0
Let $u:\mathbb{R}^n\rightarrow \mathbb{R}$ be a twice differentiable function. The 2-dimensional wave equation is
$\frac{\partial ^2u}{\partial x^2}=\frac{\partial ^2u}{\partial t^2}$, where $(x,t)$ are coordinates on $\mathbb{R}^2$. Prove that if $f,g:\mathbb{R}\rightarrow \mathbb{R}$ are twice di erentiable functions, then $u(x,t) = f(x-t) + g(x+t)$ solves the 2-dimensional wave equation. Use this fact, or another, to solve the Boundary-Value problem where
$u(s,0) = sin(s) + cos(s)$ , $u(0,s) = -sin(s) + cos(s)$ , $\forall s\in \mathbb{R}$.
 
Physics news on Phys.org
Our helpers will really have no idea where you need help when you simply post a problem with no work shown.

I have messaged you about this, and reminded you in a previous topic that our helpers are not here to do the problems, but rather to help you do the problem, and when you do not indicate what you have tried, they really cannot effectively help.

Even if you state that you have no idea even how to begin the problem, this at least let's us know something and gives the helpers a place to begin.

Can you post your work so our helpers have somewhere to begin?
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
11
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K