MHB Solve Word Problem w/ Matrices: Chapter I

  • Thread starter Thread starter megacat8921
  • Start date Start date
  • Tags Tags
    Matrices
megacat8921
Messages
8
Reaction score
0
I have a word problem that I am struggling with. I have been using matrices in this chapter, but I don't understand how it applies or where to start in order to solve this equation. Here is the word problem:

One hundred liters of a 50% solution is obtained by mixing a 60% solution with a 20% solution. How many liters of each solution must be used to obtain the desired mixture?
 
Mathematics news on Phys.org
I would let $x$ represent the amount (in liters) of the 60% solution needed, and $y$ be the number of liters of the 20% solution required. Since the final desired outcome is 100 liters of solution, we know:

$$x+y=100$$

We also know that we will need in the final solution 50L of the active ingredient, $0.6x$ coming from the 60% solution and $0.2y$ coming from the 20% solution, then we also have:

$$0.6x+0.2y=50$$

or:

$$3x+y=250$$

So, we can set up our matrix equation as follows:

$$\left[\begin{array}{c}1 & 1 \\ 3 & 1 \end{array}\right]\left[\begin{array}{c}x \\ y \end{array}\right]=\left[\begin{array}{c}100 \\ 250 \end{array}\right]$$

Can you proceed?
 
I can proceed. But I don't understand how .6x and .2y became 3 and 1.

MarkFL said:
I would let $x$ represent the amount (in liters) of the 60% solution needed, and $y$ be the number of liters of the 20% solution required. Since the final desired outcome is 100 liters of solution, we know:

$$x+y=100$$

We also know that we will need in the final solution 50L of the active ingredient, $0.6x$ coming from the 60% solution and $0.2y$ coming from the 20% solution, then we also have:

$$0.6x+0.2y=50$$

or:

$$3x+y=250$$

So, we can set up our matrix equation as follows:

$$\left[\begin{array}{c}1 & 1 \\ 3 & 1 \end{array}\right]\left[\begin{array}{c}x \\ y \end{array}\right]=\left[\begin{array}{c}100 \\ 250 \end{array}\right]$$

Can you proceed?
 
megacat8921 said:
I can proceed. But I don't understand how .6x and .2y became 3 and 1.

I multiplied the equation by 5 so that all coefficients are integers. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top