MHB Solving a Non-Linear System: Approaches and Techniques

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Non-linear System
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi members of the forum,

I am given to solve the following non-linear system:

Solve $$(1+4^{2x-y})(5^{1-2x+y})=1+2^{2x-y+1}$$ and $$y^3+4x+\ln(y^2+2x)+1=0$$

I'm interested to know how you would approach this problem because I don't see a way to do so.

Thanks!
 
Mathematics news on Phys.org
Well, $2x-y=1$ solves the LH equation, by inspection. You could rewrite this as $2x=y+1$. Plugging this into the other equation yields
$$y^3+2y+2+ \ln(y^2+y+1)+1=0,$$
or
$$y^3+2y+3+ \ln(y^2+y+1)=0.$$
WolframAlpha shows a solution of $y=-1$, which you can see solves the second equation. So the point $(0,-1)$ solves the system. It may not be unique.
 
anemone said:
Hi members of the forum,

I am given to solve the following non-linear system:

Solve $$(1+4^{2x-y})(5^{1-2x+y})=1+2^{2x-y+1}$$ and $$y^3+4x+\ln(y^2+2x)+1=0$$

I'm interested to know how you would approach this problem because I don't see a way to do so.

Thanks!
There may be a "fancy" method to showing there is only one solution, and I don't have one. :)

I do have a very suggestive graph however, which should give an idea about how to prove it. (I zoomed out to some really high values and that green function just keeps looking like it's a straight line.)

-Dan
 

Attachments

  • nonlinear.jpg
    nonlinear.jpg
    12.7 KB · Views: 69
One way to show that

$\displaystyle (1+4^{2x-y})(5^{1-2x+y})=1+2^{2x-y+1}$

has the only solution $2x-y = 1$ is to let $u = 2x-y$ so the first equations becomes

$F(u)=\displaystyle 5^{1-u} + 5 \left(\frac{4}{5}\right)^u - 2^{u+1}-1$

Clearly, $F(1) = 0$ as shown previously. To show that $F(u) \ne 0$ for other values of $u$ is to show that $F' < 0$ for all $u$.

Side bar: Since this is in the Pre-Algebra Algebra section, calculus is probably not assumed :-)
 
Last edited:
I want to thank all of you for helping me with this tough problem. It takes very little time to arrive at the result if we approach the problem by inspection, and then try to prove the first equation has only one solution using the calculus. I appreciate all of the help and thanks to MHB particularly for providing the platform for us to ask for guidance in every maths problems that we encounter.

P.S. This problem is actually an Olympiad maths problem and thus, I am sorry for posting this in this sub-forum but I don't know where else I should post this; sorry if I have posted it in an inappropriate sub-forum.
 
anemone said:
...
P.S. This problem is actually an Olympiad maths problem and thus, I am sorry for posting this in this sub-forum but I don't know where else I should post this; sorry if I have posted it in an inappropriate sub-forum.

Hello anemone,

Personally I feel you chose the sub-forum in which to post this problem appropriately. It is after all an algebra problem, and Jester was merely commenting that the calculus could be used as a tool to show the uniqueness of the solution, but he was unsure whether this was a technique you would want to consider given you posted here. I don't think he was implying you posted incorrectly.

I know you are careful about where and how you post, so you can rest assured the staff here does not in any way think you are careless about where you have posted a problem. (Happy)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top