Solving a set of nonlinear quadratic equations

Click For Summary
SUMMARY

The forum discussion centers on solving a set of nonlinear quadratic equations represented by the equation ϒϒ'C – ϒα = B, where ϒ is a column vector, C is a column vector, and α is a real scalar. Participants highlight the challenges of this equation, particularly when B is a nonzero column vector, and discuss the implications of the left-hand side being a real symmetric rank one matrix. The conversation emphasizes the need for clarity in the formulation of the equations and suggests that if B is not a scaled version of ϒ or the zero vector, the problem becomes significantly more complex.

PREREQUISITES
  • Understanding of nonlinear quadratic equations
  • Familiarity with matrix algebra and eigenvectors
  • Knowledge of real scalar properties
  • Experience with mathematical problem formulation
NEXT STEPS
  • Research methods for solving nonlinear quadratic equations
  • Explore eigenvector and eigenvalue concepts in matrix theory
  • Learn about symmetric matrices and their properties
  • Investigate numerical algorithms for nonlinear systems, such as Newton's method
USEFUL FOR

Mathematicians, data scientists, and engineers dealing with nonlinear systems, as well as students studying advanced algebra and matrix theory.

Tilfani
Messages
11
Reaction score
0
I would like to solve this system, which is a sets of non linear quadratic equations, the system needed to be solved can be expressed in general as follow:

ϒϒ'C – ϒα = B

Where ϒ=(ϒ1,ϒ2,...ϒn)’ is a column vector and ϒ’ its transpose

C=(c1,c2,…,cn)’ and B=(b1,b2,…bn)’ are a columns vector

And α is a reel scalar

I would like to solve for ϒ, with approximatively about 30

Can someone propose me an algorihm/method to solve this system.
also a code to do it wil be very useful.
Bests
 
Last edited:
Physics news on Phys.org
Tilfani said:
I would like to solve this system, which is a sets of non linear quadratic equations, the system needed to be solved can be expressed in general as follow:

ϒ’ϒC – ϒα = B

Where ϒ=(ϒ1,ϒ2,...ϒn)’ is a column vector and ϒ’ its transpose

C=(c1,c2,…,cn)’ and B=(b1,b2,…bn)’ are a columns vector

And α is a reel scalar

I would like to solve for ϒ, with approximatively about 30

Can someone propose me an algorihm/method to solve this system.
also a code to do it wil be very useful.
Bests
Y' Y is a scalar, ##\vec Y \cdot \vec Y = |\vec Y|^2##. If you know the value of ##\vec Y \cdot \vec Y## (but don't know the components of ##\vec Y##), you can rewrite the equation above as a system of equations:
##\alpha Y_1 = \vec Y \cdot \vec Y - b_1##
##\alpha Y_2 = \vec Y \cdot \vec Y - b_2##
.
.
.
##\alpha Y_n = \vec Y \cdot \vec Y - b_n##

Divide both sides by ##\alpha## to get
##Y_1 = 1/\alpha (\vec Y \cdot \vec Y - b_1)##
##Y_2 = 1/\alpha (\vec Y \cdot \vec Y - b_2)##
.
.
.
##Y_n = 1/\alpha (\vec Y \cdot \vec Y - b_n)##
 
so we're dealing with real scalars here.
- - - -

So your 'equation' is:

ϒϒ'C – ϒα = B
or

ϒϒ'C = ϒα + B

so you have a real symmetric rank one matrix on the Left Hand side (LHS).

The issue is that every possible c you can choose on the LHS gets mapped to zero or is an eigenvector (i.e. ϒ) or a linear combination of the two aforementioned things. So let's hope that B is either a scaled version of ϒ or else the zero vector. If your B is the zero vector, it should be pretty easy. Otherwise you have problems.

More issues: For starters, why write ϒα + B on the Right hand side... why not just write
##\propto ϒ##
 
StoneTemplePython said:
so we're dealing with real scalars here.
- - - -

So your 'equation' is:

ϒϒ'C – ϒα = B
or

ϒϒ'C = ϒα + B

so you have a real symmetric rank one matrix on the Left Hand side (LHS).

The issue is that every possible c you can choose on the LHS gets mapped to zero or is an eigenvector (i.e. ϒ) or a linear combination of the two aforementioned things. So let's hope that B is either a scaled version of ϒ or else the zero vector. If your B is the zero vector, it should be pretty easy. Otherwise you have problems.

More issues: For starters, why write ϒα + B on the Right hand side... why not just write
##\propto ϒ##
B is nonzero column, there is a way to solve that?
 
Tilfani said:
B is nonzero column, there is a way to solve that?

then ##B \propto ϒ## or this is not an equation
 
StoneTemplePython said:
then ##B \propto ϒ## or this is not an equation
B is a constant.
 
Tilfani said:
B is a constant.

I don't know what this means. Your original post, and a quick dimensional check say B is a a column vector.

What I am trying to tell you is your original post is analogous to

## 2 = 3##

or

## 2 = 3 +x##
for real ## x \geq 0##

this is not an equation. It is just wrong.
 
Yes i mean B is a constant column vector. Do you think that is wrong to?
 
  • #10
You're not hearing me. It is one of the 3 options

option a)
## B = \mathbf 0##

option b)
##B \propto ϒ##

option c)
this is not an equation. It is just wrong.
- - - - -
I have nothing more to say on the matter. Good luck.
 
  • #11
Ok, please look at eq (2 19) page 8 on this link, this paper, maybe some thing wrong.
Portfolio Theory: Origins, Markowitz and CAPM Based Selection - Springer
PDFhttps://www.springer.com › document
 
  • #12
Tilfani said:
Ok, please look at eq (2 19) page 8 on this link, this paper, maybe some thing wrong.
Portfolio Theory: Origins, Markowitz and CAPM Based Selection - Springer
PDFhttps://www.springer.com › document
Please provide the actual link to the document. The link you show is just to the Springer site.
 
  • #13
Mark44 said:
Please provide the actual link to the document. The link you show is just to the Springer site.
Please find enclosed the document. Go to page 7 to see the original problem, the resolution of lagrangian (which may be wrong) lead to equation posted which is (2 19)
 

Attachments

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
35K