MHB Solving a Simultaneous Equation Problem

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around solving a simultaneous equation problem involving two equations: $5x^2y-4xy^2+3y^3-2(x+y)=0$ and $xy(x^2+y^2)+2=(x+y)^2$. The original poster finds their solution method tedious and seeks a more efficient approach. They factor the second equation to derive conditions $x^2+y^2=2$ and $xy=1$, leading to specific solutions including $(1,1)$ and $(-1,-1)$. Other participants suggest alternative methods, confirming that substituting $x^2+y^2=2$ into the first equation can simplify the problem, ultimately yielding the same solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I've recently come across the following simultaneous equation problem:

$5x^2y-4xy^2+3y^3-2(x+y)=0$ and $xy( x^2+y^2)+2=(x+y)^2$.

I solved it, it isn't a hard problem, but I would think my method is way too tedious, I was wondering if there exists a more neater approach for this particular problem. If you have another method to solve it, could you please share your solution with me?

Many thanks in advance.

My solution:

Observe that we can actually factor the second equation and get:

$xy(x^2+y^2)+2=x^2+y^2+2xy$

$(x^2+y^2)(xy-1)+2(1-xy)=0$

$(x^2+y^2-2)(xy-1)=0$

So, we have either $x^2+y^2=2$ and/or $xy=1$.

We also note that if $(x,\,y)$ is a solution, then so is $(-x,\,-y)$.

It's not hard to see that $x=y=1$ and $x=y=-1$ are two possible solutions when $x^2+y^2=2$ and $xy=1$ hold.

Now, we let $x^2+y^2=2$ and $xy\ne 1$.

In this case, we have:

$x^2+y^2=2$

$\left(\dfrac{x}{\sqrt{2}}\right)^2+\left(\dfrac{y}{\sqrt{2}}\right)^2=1$

And let $x=\sqrt{2}\sin \theta$ and $y=\sqrt{2}\cos \theta$

Replacing these two into the first given equation gives:

$4\cos \theta-2\cos^3 \theta=\sin \theta+4\sin \theta \cos^2 \theta$ which is equivalent to

$\tan^3 \theta-4\tan^2 \theta+5\tan \theta-2=0$

Solving for $\tan \theta$ we see that

$\tan \theta=1\implies \sin \theta=\dfrac{1}{\sqrt{2}},\,\cos \theta=\dfrac{1}{\sqrt{2}}$, i.e. $x=\sqrt{2}\left(\dfrac{1}{\sqrt{2}}\right)=1=y$

$\tan \theta=2\implies \sin \theta=\dfrac{2}{\sqrt{5}},\,\cos \theta=\dfrac{1}{\sqrt{5}}$, i.e. $x=\sqrt{2}\left(\dfrac{2}{\sqrt{5}}\right)=2\sqrt{\dfrac{2}{5}}$, $y=\sqrt{2}\left(\dfrac{1}{\sqrt{5}}\right)=\sqrt{\dfrac{2}{5}}$

Therefore the solutions to the given system are

$(x,\,y)=(1,\,1),\,(-1,\,-1),\,\left(2\sqrt{\dfrac{2}{5}},\,\sqrt{\dfrac{2}{5}}\right),\,\left(-2\sqrt{\dfrac{2}{5}},\,-\sqrt{\dfrac{2}{5}}\right)$.
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

I've recently come across the following simultaneous equation problem:

$5x^2y-4xy^2+3y^3-2(x+y)=0$ and $xy( x^2+y^2)+2=(x+y)^2$.

I solved it, it isn't a hard problem, but I would think my method is way too tedious, I was wondering if there exists a more neater approach for this particular problem. If you have another method to solve it, could you please share your solution with me?

Many thanks in advance.

My solution:

Observe that we can actually factor the second equation and get:

$xy(x^2+y^2)+2=x^2+y^2+2xy$

$(x^2+y^2)(xy-1)+2(1-xy)=0$

$(x^2+y^2-2)(xy-1)=0$

So, we have either $x^2+y^2=2$ and/or $xy=1$.

We also note that if $(x,\,y)$ is a solution, then so is $(-x,\,-y)$.

It's not hard to see that $x=y=1$ and $x=y=-1$ are two possible solutions when $x^2+y^2=2$ and $xy=1$ hold.

Now, we let $x^2+y^2=2$ and $xy\ne 1$.

In this case, we have:

$x^2+y^2=2$

$\left(\dfrac{x}{\sqrt{2}}\right)^2+\left(\dfrac{y}{\sqrt{2}}\right)^2=1$

And let $x=\sqrt{2}\sin \theta$ and $y=\sqrt{2}\cos \theta$

Replacing these two into the first given equation gives:

$4\cos \theta-2\cos^3 \theta=\sin \theta+4\sin \theta \cos^2 \theta$ which is equivalent to

$\tan^3 \theta-4\tan^2 \theta+5\tan \theta-2=0$

Solving for $\tan \theta$ we see that

$\tan \theta=1\implies \sin \theta=\dfrac{1}{\sqrt{2}},\,\cos \theta=\dfrac{1}{\sqrt{2}}$, i.e. $x=\sqrt{2}\left(\dfrac{1}{\sqrt{2}}\right)=1=y$

$\tan \theta=2\implies \sin \theta=\dfrac{2}{\sqrt{5}},\,\cos \theta=\dfrac{1}{\sqrt{5}}$, i.e. $x=\sqrt{2}\left(\dfrac{2}{\sqrt{5}}\right)=2\sqrt{\dfrac{2}{5}}$, $y=\sqrt{2}\left(\dfrac{1}{\sqrt{5}}\right)=\sqrt{\dfrac{2}{5}}$

Therefore the solutions to the given system are

$(x,\,y)=(1,\,1),\,(-1,\,-1),\,\left(2\sqrt{\dfrac{2}{5}},\,\sqrt{\dfrac{2}{5}}\right),\,\left(-2\sqrt{\dfrac{2}{5}},\,-\sqrt{\dfrac{2}{5}}\right)$.

Hi anemone, :)

I think it's not necessary to use trigonometric substitutions. After obtaining $x^2+y^2=2$ and/or $xy=1$ from the second equation we can use the first equation with,

1) $xy=1$ which will give us $(1,1)$ or $(-1,-1)$.

2) $x^2+y^2=2$ which will give us $xy=1$ or $x=2y$. Solving $x^2+y^2=2$ and $xy=1$ gives us the same two answers obtained above and solving $x^2+y^2=2$ and $x=2y$ will give us $\left(\pm 2\sqrt{\frac{2}{5}},\pm\sqrt{\frac{2}{5}}\right)$.
 
Sudharaka said:
Hi anemone, :)

I think it's not necessary to use trigonometric substitutions. After obtaining $x^2+y^2=2$ and/or $xy=1$ from the second equation we can use the first equation with,

1) $xy=1$ which will give us $(1,1)$ or $(-1,-1)$.

2) $x^2+y^2=2$ which will give us $xy=1$ or $x=2y$. Solving $x^2+y^2=2$ and $xy=1$ gives us the same two answers obtained above and solving $x^2+y^2=2$ and $x=2y$ will give us $\left(\pm 2\sqrt{\frac{2}{5}},\pm\sqrt{\frac{2}{5}}\right)$.

Hi Sudharaka!:)

Thank you so much for your reply, I see it now, if we substitute $x^2+y^2=2$ into the first equation wisely, we will get:

$5x^2y+3y^3=2(x+y)+4xy^2$

$5x^2y+3y^3=2x+4xy^2+2y$

$5x^2y+3y^3-2y=2(x+2xy^2)$

$3y(x^2y+y^2)+2x^2y-2y=2(x+2xy^2)$

$3y(2)+2x^2y-2y=2(x+2xy^2)$

$2x^2y+4y=2(x+2xy^2)$

$x^2y+2y=x+2xy^2$

$(xy-1)(x-2y)=0$

And the rest is pretty self-explanatory...thank you Sud! I appreciate the help!
 
anemone said:
Hi Sudharaka!:)

Thank you so much for your reply, I see it now, if we substitute $x^2+y^2=2$ into the first equation wisely, we will get:

$5x^2y+3y^3=2(x+y)+4xy^2$

$5x^2y+3y^3=2x+4xy^2+2y$

$5x^2y+3y^3-2y=2(x+2xy^2)$

$3y(x^2y+y^2)+2x^2y-2y=2(x+2xy^2)$

$3y(2)+2x^2y-2y=2(x+2xy^2)$

$2x^2y+4y=2(x+2xy^2)$

$x^2y+2y=x+2xy^2$

$(xy-1)(x-2y)=0$

And the rest is pretty self-explanatory...thank you Sud! I appreciate the help!

You are welcome. Yep that would do. What I did was,

\[5x^2y-4xy^2+3y^3-2(x+y)=0\]

\[y(5x^2-4xy+3y^2)-2x-2y=0\]

\[y(2x^2-4xy+6)-2x-2y=0\]

\[2x^2 y-4xy^2+4y-2x=0\]

And you group the similar terms together. :)
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
988
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K