Solving a system of recursive functions

  • Context: Graduate 
  • Thread starter Thread starter Chef Hoovisan
  • Start date Start date
  • Tags Tags
    Functions System
Click For Summary

Discussion Overview

The discussion revolves around a system of recursive functions defined by two equations involving functions f and g, with specific initial conditions. Participants explore potential simplifications and connections to trigonometric functions, while also delving into a related mathematical puzzle involving elastic collisions between two balls of differing masses on a frictionless surface.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • One participant presents a system of recursive functions and seeks guidance on simplifying it, noting the initial conditions f(0) = 0 and g(0) > 0.
  • Another participant questions the purpose of the initial conditions and asks for clarification on the intended simplification of the system.
  • A participant introduces a related mathematical puzzle involving collisions between two balls, providing context and governing formulas for the scenario.
  • The governing equations for the velocities of the balls during collisions are shared, emphasizing the need to account for the rebound of the small ball.
  • One participant suggests that the problem may be discrete-time and proposes the use of a Z-transform as a potential tool for analysis.

Areas of Agreement / Disagreement

Participants express varying levels of understanding and interest in the recursive functions and the associated puzzle. There is no consensus on the best approach to simplify the system or on the implications of the initial conditions. The discussion remains open-ended with multiple perspectives presented.

Contextual Notes

The discussion includes complex relationships between the recursive functions and the mathematical puzzle, with participants acknowledging the intricacies involved in both areas. The connection to trigonometric functions and the specifics of the collision dynamics are noted but not fully resolved.

Who May Find This Useful

Readers interested in recursive functions, mathematical puzzles, elastic collisions, and discrete-time analysis may find this discussion relevant.

Chef Hoovisan
Messages
2
Reaction score
0
I've run across a system of recursive functions (call them f and g). The system looks like this:

f(x) = a f(x-1) + b g(x-1)
g(x) = a g(x-1) + c f(x-1)

I also know that f(0) = 0 and g(0)>0. Finally, I know for other reasons that are too complicated to go into here that the system is somehow related to the trig functions. This is well outside my area of expertise, so I'm hopeful one of you can point me in the right direction so that I can perhaps simplify the system. Thanks in advance.
 
Physics news on Phys.org
Chef Hoovisan said:
I've run across a system of recursive functions (call them f and g). The system looks like this:

f(x) = a f(x-1) + b g(x-1)
g(x) = a g(x-1) + c f(x-1)

I also know that f(0) = 0 and g(0)>0. Finally, I know for other reasons that are too complicated to go into here that the system is somehow related to the trig functions. This is well outside my area of expertise, so I'm hopeful one of you can point me in the right direction so that I can perhaps simplify the system. Thanks in advance.

If it's possible can you say what are you trying to do here. Why is f(0) = 0 and g(0)>0? Is it some kind of conditions?
In what way are you trying to simplify the system.Please do explain
 
I'll give you the context, but as I said it's a bit involved. It's a math puzzle to which I know the answer, but do not understand the intuition behind the answer. Here's the puzzle:

A “small” ball with unit mass is resting on a pool table. A “big” ball with mass 16x100n (n a non-negative integer) is also resting on the pool table. That is, the higher mass ball will have a mass of m∈{ 16, 1600, 160000, …}. A man then strikes the big ball causing it to move toward and then strike the small ball. This collision sends the small off toward the bumper. The direction of all movement is perpendicular to the bumper, so the small ball rebounds from the bumper and returns until it strikes the big ball. Another collision results, sending the small ball back toward the bumper and repeating the process (albeit with different velocities for the balls). The pool table is frictionless and its bumpers are perfectly elastic, so there is no loss of velocity as the balls move along the table or when they rebound after hitting a bumper. Eventually, the collisions slow the big ball enough so that it reverses course and moves away from the small ball rather than toward it, thus ending the process. How many collisions, as a function of n, will there be between the big and small balls? Note that because of the frictionless system, you can ignore any spin in the balls and focus only on conservation of momentum and conservation of energy.

The governing formulas for this situation are shown here: http://en.wikipedia.org/wiki/Elastic_collision . Let m1 and m2 be the masses of the two balls and let v1(n) and v2(n) be the velocities of the two balls. We then have

v1(x) = (v1(x-1)*(m1-m2) + 2m2v2(x-1)) / (m1+m2)

and

v2(x) = (v2(x-1)*(m2-m1) + 2m1v1(x-1)) / (m2+m1)

Using a little algebra from there, you get the form I mentioned in the original post. Note that you do need to be careful to reverse the sign of the small ball's velocity to account for its rebound off the wall.

This is one of the most interesting math puzzles I've ever run across (and I've seen many, many of them), so I won't spoil the solution in case you want to work on it. I've seen a few somewhat unsatisfying "solutions," which is what has led me to ponder the recursive nature of the problem and how that might be used to produce a solution that provides good intuition.
 
Would you say the problem is discrete-time? If so, a Z-transform might help.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K