MHB Solving Absolute Value Inequalities: Steps & Link to Yahoo! Answers

AI Thread Summary
To solve the absolute value inequality a - |1/bxy| = b, it is necessary that b ≠ 0 and xy ≠ 0. The solution involves defining the first quadrant D1 as the set of positive x and y values. The equation simplifies to y = 1/((a-b)|b|) * (1/x) when a > b, resulting in a branch of an equilateral hyperbola in D1. If a ≤ b, the solution yields an empty set. The same analysis can be applied to other quadrants for a complete understanding of the solutions.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Solve the following inequaltities: a - l 1/bxy l = b
l = absolute value
Please include all the steps. Thank you!

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
I suppose you mean: solve the equality $a - \left| \dfrac{1}{bxy}\right| = b$. In such case, necessarily $b\ne 0$ and $xy\ne 0$. Denote $D_1=\{(x,y)\in\mathbb{R}^2:x>0,y>0\}$ the open first quadrant, then $$a - \left| \dfrac{1}{bxy}\right| = b\Leftrightarrow a-\frac{1}{|b|xy}=b\Leftrightarrow y=\frac{1}{(a-b)|b|}\frac{1}{x}$$
If $a>b$ we get a branch of an equilateral hyperbola on $D_1$. If $a\le b$, the empty set. You can follow similar arguments for the rest of open quadrants.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top