Solving an equation with fractional part function

Click For Summary

Homework Help Overview

The discussion revolves around solving the equation involving the fractional part function, specifically: ## \{ x \} + \{ -x \} = x^2 + x -6##. The original poster notes that there are expected to be four roots, two of which are integers.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants explore different cases based on whether x is an integer or not, leading to quadratic equations. There are attempts to clarify the definition and behavior of the fractional part function for negative values, particularly in relation to the equation's setup.

Discussion Status

Some participants have provided insights into the fractional part function's definition, leading to further exploration of the equation. There is an ongoing examination of the implications of this definition on the solutions and the nature of the roots.

Contextual Notes

There are discussions about the interpretation of the fractional part function for negative numbers, with examples provided to illustrate potential ambiguities. The original poster and others express uncertainty regarding the correct approach to defining the fractional part in these cases.

Priyadarshi Raj
Messages
8
Reaction score
1

Homework Statement


If ##\{ x \}## denotes the fractional part of x, then solve:
## \{ x \} + \{ -x \} = x^2 + x -6##

It's provided that there are going to be 4 roots of this equation. And two of them will be integers.

Homework Equations


## 0 \lt \{ x \} \lt 1~~\text{if}~~x \not\in I##
## \{ x \} = 0~~\text{if}~~x \in I ##

The Attempt at a Solution


CASE 1: When ## x \in I##
⇒ ## 0 + 0 = x^2 +x -6 ##
⇒ ## x = -3, 2##
I got two integer roots here.

CASE 2: When ## x \not\in I##
## \text{Let, }~~x=i+f ,~~\text{where}~~i \in I~~\text{and}~~0<f<1 ##
⇒ ## \{ i+f \} + \{ -(i+f) \} = (i+f)^2 + (i+f) - 6 ##
⇒ ## f +f = (i^2 +f^2 +2if) + (i+f) -6 ##
⇒ ## f^2 + (2i-1)f + (i^2 + i -6) = 0 ##
⇒ ## f = \frac{(1-2i) \pm \sqrt{(2i-1)^2 -4(i^2 + i -6)}}{2} ##
⇒ ## f = \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} ##
Now
## 0<f<1 ##
⇒ ## 0<\frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} <1##
⇒ ## \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} >0 ~~ \text{and} ~~ \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} <1 ##
⇒ ##(1-2i) \pm \sqrt{8i^2 -23}>0 ~~ \text{and} ~~ (1-2i) \pm \sqrt{8i^2 -23}<2 ##
⇒ ##\pm \sqrt{8i^2 -23}>2i-1 ~~ \text{and} ~~ \pm \sqrt{8i^2 -23}<2i+1 ##
Squaring,
⇒ ##8i^2 -23>4i^2 -4i +1 ~~ \text{and} ~~ 8i^2 -23<4i^2 +4i +1 ##
⇒ ##4i^2 +4i -24>0 ~~ \text{and} ~~ 4i^2 -4i -24<0 ##
⇒ ##i^2 +i -6>0 ~~ \text{and} ~~ i^2 -i -6<0 ##
⇒ ##(i+3)(i-2)>0 ~~ \text{and} ~~ (i-3)(i+2)<0 ##
⇒ ##(i>2 \text{or} i<-3) ~~ \text{and} ~~ (i>-2 \text{and} i<3) ##
⇒ ##2<i<3##

but this gives no definite solution.

Please help me.
Thank you.
 
Physics news on Phys.org
Hi,

Can you explain how $$
\{ i+f \} + \{ -(i+f) \} = f + f \quad ? $$ For with e.g ##x = 1.3## I don't get ##0.6## !
 
Priyadarshi Raj said:

Homework Statement


If ##\{ x \}## denotes the fractional part of x, then solve:
## \{ x \} + \{ -x \} = x^2 + x -6##

It's provided that there are going to be 4 roots of this equation. And two of them will be integers.

Homework Equations


## 0 \lt \{ x \} \lt 1~~\text{if}~~x \not\in I##
## \{ x \} = 0~~\text{if}~~x \in I ##

The Attempt at a Solution


CASE 1: When ## x \in I##
⇒ ## 0 + 0 = x^2 +x -6 ##
⇒ ## x = -3, 2##
I got two integer roots here.

CASE 2: When ## x \not\in I##
## \text{Let, }~~x=i+f ,~~\text{where}~~i \in I~~\text{and}~~0<f<1 ##
⇒ ## \{ i+f \} + \{ -(i+f) \} = (i+f)^2 + (i+f) - 6 ##
⇒ ## f +f = (i^2 +f^2 +2if) + (i+f) -6 ##
⇒ ## f^2 + (2i-1)f + (i^2 + i -6) = 0 ##
⇒ ## f = \frac{(1-2i) \pm \sqrt{(2i-1)^2 -4(i^2 + i -6)}}{2} ##
⇒ ## f = \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} ##
Now
## 0<f<1 ##
⇒ ## 0<\frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} <1##
⇒ ## \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} >0 ~~ \text{and} ~~ \frac{(1-2i) \pm \sqrt{8i^2 -23}}{2} <1 ##
⇒ ##(1-2i) \pm \sqrt{8i^2 -23}>0 ~~ \text{and} ~~ (1-2i) \pm \sqrt{8i^2 -23}<2 ##
⇒ ##\pm \sqrt{8i^2 -23}>2i-1 ~~ \text{and} ~~ \pm \sqrt{8i^2 -23}<2i+1 ##
Squaring,
⇒ ##8i^2 -23>4i^2 -4i +1 ~~ \text{and} ~~ 8i^2 -23<4i^2 +4i +1 ##
⇒ ##4i^2 +4i -24>0 ~~ \text{and} ~~ 4i^2 -4i -24<0 ##
⇒ ##i^2 +i -6>0 ~~ \text{and} ~~ i^2 -i -6<0 ##
⇒ ##(i+3)(i-2)>0 ~~ \text{and} ~~ (i-3)(i+2)<0 ##
⇒ ##(i>2 \text{or} i<-3) ~~ \text{and} ~~ (i>-2 \text{and} i<3) ##
⇒ ##2<i<3##

but this gives no definite solution.

Please help me.
Thank you.
You have to tell us how you define ##\{ x \}## for negative ##x##.
 
Priyadarshi Raj said:

Homework Statement


If ##\{ x \}## denotes the fractional part of x, then solve:
## \{ x \} + \{ -x \} = x^2 + x -6##

It's provided that there are going to be 4 roots of this equation. And two of them will be integers.Please help me.
Thank you.

Since, for example, we can write ##-1.4## as either ## -1 - 0.4## or as ## - 2 + 0.6##, we could consider ##\{-1.4\}## as being either ##-0.4## or ##+0.6##. Which one would you take?
 
Based on the first relevant equation I concluded ## 0.6 ## ...
 
Sorry, I did a silly mistake there.

My teacher said, the fractional part function is defined as:
## \{ x \} = x - [x] ##, where [x] is the greatest integer function.

@Ray Vickson , that makes ## \{ -1.4 \} = +0.6 ##
So,
## \text{When}~~ x \not\in I \\
\{ x \} + \{ -x \} \\ \qquad = (x - [x] ) + (-x - [-x]) \\ \qquad= -[i+f] - [-(i+f)] \\ \qquad= -(i) - (-i-1)~~\text{or}~~ -(-i-1) - (i) \\ \qquad= 1\\

⇒ 1 = x^2 +x -6 \\
⇒x^2 +x -7 = 0 ##
and that gives the other two roots.

Thank you everyone!
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K