Solving an Integral Equation with Separable Kernels

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral equation \(f(x) = 1 + \lambda\int_0^1\big(xy + x^3y^2\big)f(y)dy\) is solved using the method of separable kernels. The solution is expressed as \(f(x_i) = 1 + \sum_{i=1}^2 x^{2i - 1} A_i\), where \(A_i\) is derived from the integral of \(f(y)\). The final form of the solution is \(f(x) = 1 - x\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)} + x^3 \frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}\). The determinant condition for the matrix must also be satisfied for a unique solution.

PREREQUISITES
  • Understanding of integral equations
  • Familiarity with separable kernels
  • Knowledge of linear algebra, particularly matrix determinants
  • Basic calculus, including integration techniques
NEXT STEPS
  • Study the method of separable kernels in greater detail
  • Explore advanced techniques in solving integral equations
  • Learn about the implications of matrix determinants in linear systems
  • Investigate applications of integral equations in physics and engineering
USEFUL FOR

Mathematicians, physicists, and engineers involved in solving integral equations, particularly those utilizing separable kernels in their work.

Dustinsfl
Messages
2,217
Reaction score
5
Checking to see if my solution is correct.

Solve the integral equation
\[
f(x) = 1 + \lambda\int_0^1\big(xy + x^3y^2\big)f(y)dy
\]
using the method of separable kernels

We need to rewrite \(f(x)\).
\[
f(x_i) = 1 + \sum_{i = 1}^2x^{2i - 1}A_i
\]
where \(A_i = \lambda\int_0^1y^if(y)dy\). Let \(f(y_i) = 1 + \sum\limits_{i = 1}^2y^{2i - 1}A_i\). Then
\begin{align*}
A_i &= \lambda\int_0^1y^i\Bigg(1 + \sum_{j = 1}^2y^{2j - 1}A_j\Bigg)dy\\
&= \lambda\int_0^1y^idy +
\lambda\sum_{j = 1}^2A_j\int_0^1y^{2j - 1}y^idy\\
\sum_{j = 1}^2\Bigg(\delta_{ij} - \lambda\int_0^1y^{2j - 1}y^idy\Bigg)A_j
&= \lambda\int_0^1y^idy\\
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix}
&= \lambda
\begin{pmatrix}
\frac{1}{2}\\
\frac{1}{3}
\end{pmatrix}\\
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} &=
\begin{pmatrix}
-\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)}\\[.3cm]
\frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}
\end{pmatrix}
\end{align*}
Therefore, \(f(x_i)\) is
\[
\begin{pmatrix}
f(x_1)\\
f(x_2)
\end{pmatrix} =
\begin{pmatrix}
-x\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)}\\[.3cm]
x^3\frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}
\end{pmatrix}.
\]
Additionally, if the determinant of
\[
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
= 0,
\]
then we only have a solution if \(v_i(y) = \int_0^1y^idy = 0\).
\[
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} =
\begin{pmatrix}
A_1\Big(1 - \frac{\lambda}{3}\Big) - \frac{\lambda A_2}{5}\\
A_2\Big(1 - \frac{\lambda}{6}\Big) - \frac{\lambda A_1}{4}
\end{pmatrix} =
\mathbf{0}
\]
Therefore, \(A_i\) is
\[
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} =
\begin{pmatrix}
1\\
0
\end{pmatrix}
\]
and \(f(x_i)\) is
\[
\begin{pmatrix}
f(x_1)\\
f(x_2)
\end{pmatrix} =
\begin{pmatrix}
1 + x\\
1
\end{pmatrix}.
\]
 
Physics news on Phys.org
dwsmith said:
Checking to see if my solution is correct.

Solve the integral equation
\[
f(x) = 1 + \lambda\int_0^1\big(xy + x^3y^2\big)f(y)dy
\]
using the method of separable kernels

We need to rewrite \(f(x)\).
\[
f(x_i) = 1 + \sum_{i = 1}^2x^{2i - 1}A_i
\]
where \(A_i = \lambda\int_0^1y^if(y)dy\). Let \(f(y_i) = 1 + \sum\limits_{i = 1}^2y^{2i - 1}A_i\). Then
\begin{align*}
A_i &= \lambda\int_0^1y^i\Bigg(1 + \sum_{j = 1}^2y^{2j - 1}A_j\Bigg)dy\\
&= \lambda\int_0^1y^idy +
\lambda\sum_{j = 1}^2A_j\int_0^1y^{2j - 1}y^idy\\
\sum_{j = 1}^2\Bigg(\delta_{ij} - \lambda\int_0^1y^{2j - 1}y^idy\Bigg)A_j
&= \lambda\int_0^1y^idy\\
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix}
&= \lambda
\begin{pmatrix}
\frac{1}{2}\\
\frac{1}{3}
\end{pmatrix}\\
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} &=
\begin{pmatrix}
-\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)}\\[.3cm]
\frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}
\end{pmatrix}
\end{align*}
Therefore, \(f(x_i)\) is
\[
\begin{pmatrix}
f(x_1)\\
f(x_2)
\end{pmatrix} =
\begin{pmatrix}
-x\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)}\\[.3cm]
x^3\frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}
\end{pmatrix}.
\]
Additionally, if the determinant of
\[
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
= 0,
\]
then we only have a solution if \(v_i(y) = \int_0^1y^idy = 0\).
\[
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} =
\begin{pmatrix}
A_1\Big(1 - \frac{\lambda}{3}\Big) - \frac{\lambda A_2}{5}\\
A_2\Big(1 - \frac{\lambda}{6}\Big) - \frac{\lambda A_1}{4}
\end{pmatrix} =
\mathbf{0}
\]
Therefore, \(A_i\) is
\[
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} =
\begin{pmatrix}
1\\
0
\end{pmatrix}
\]
and \(f(x_i)\) is
\[
\begin{pmatrix}
f(x_1)\\
f(x_2)
\end{pmatrix} =
\begin{pmatrix}
1 + x\\
1
\end{pmatrix}.
\]

olve the integral equation
\[
f(x) = 1 + \lambda\int_0^1\big(xy + x^3y^2\big)f(y)dy
\]
using the method of separable kernels

We need to rewrite \(f(x)\).
\[
f(x) = 1 + \sum_{i = 1}^2x^{2i - 1}A_i
\]
where \(A_i = \lambda\int_0^1y^if(y)dy\). Let \(f(y_i) = 1 + \sum\limits_{i = 1}^2y^{2i - 1}A_i\). Then
\begin{align*}
A_i &= \lambda\int_0^1y^i\Bigg(1 + \sum_{j = 1}^2y^{2j - 1}A_j\Bigg)dy\\
&= \lambda\int_0^1y^idy +
\lambda\sum_{j = 1}^2A_j\int_0^1y^{2j - 1}y^idy\\
\sum_{j = 1}^2\Bigg(\delta_{ij} - \lambda\int_0^1y^{2j - 1}y^idy\Bigg)A_j
&= \lambda\int_0^1y^idy\\
\begin{pmatrix}
1 - \frac{\lambda}{3} & -\frac{\lambda}{5}\\
-\frac{\lambda}{4} & 1 - \frac{\lambda}{6}
\end{pmatrix}
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix}
&= \lambda
\begin{pmatrix}
\frac{1}{2}\\
\frac{1}{3}
\end{pmatrix}\\
\begin{pmatrix}
A_1\\
A_2
\end{pmatrix} &=
\begin{pmatrix}
-\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)}\\[.3cm]
\frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}
\end{pmatrix}
\end{align*}
Then the solution is
\[
f(x) = 1 -x\frac{3\lambda(\lambda - 30)}{180 + \lambda(\lambda - 90)} + x^3 \frac{5\lambda(\lambda + 24)}{360 + 2\lambda(\lambda - 90)}.
\]
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K