MHB Solving Continued Proportion Problem with Componendo Dividendo

  • Thread starter Thread starter kuheli
  • Start date Start date
AI Thread Summary
The discussion revolves around proving the equation (a+b+c)²/(a²+b²+c²) = (a+b+c)/(a-b+c) under the condition that a, b, and c are in continued proportion. The initial approach involves expanding (a+b+c)² and applying the componendo dividendo method, but the user encounters difficulties in reaching a solution. A response suggests using the relationship between a, b, and c, specifically that ac = b², to simplify the proof. The conversation emphasizes the importance of manipulating the expressions correctly to achieve the desired result. Continued guidance is encouraged to resolve the problem effectively.
kuheli
Messages
14
Reaction score
0
Re: mean proportion problem

if a,b,c are in continued proportion

prove that
(a+b+c)^2/(a^2 +b^2 + c^2)=(a+b+c)/(a-b+c) i break the part -> (a+b+c)^2 into (a^2 +b^2+c^2+2ab+2bc+2ac) and then use componendo dividendo to the numerator and denominator to the problem,,, but its still not working out .wondering how to solve it . please help ! :confused:
 
Mathematics news on Phys.org
Re: mean proportion problem

kuheli said:
if a,b,c are in continued proportion

prove that
(a+b+c)^2/(a^2 +b^2 + c^2)=(a+b+c)/(a-b+c) i break the part -> (a+b+c)^2 into (a^2 +b^2+c^2+2ab+2bc+2ac) and then use componendo dividendo to the numerator and denominator to the problem,,, but its still not working out .wondering how to solve it . please help ! :confused:

Hi kuheli, :)

Note that,

\[(a-b+c)(a+b+c)=a^2-b^2+c^2+2ac\]

Since \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\) we have,

\[(a-b+c)(a+b+c)=a^2+b^2+c^2\]

Hope you can continue. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top