MHB Solving DE using Frobenius series method

ssh
Messages
17
Reaction score
0
Solve xy'= y using frobenius method

The explanation given in the book is very confusing can somebody explain in simple method.

Thanks
 
Physics news on Phys.org
ssh said:
Solve xy'= y using frobenius method

The explanation given in the book is very confusing can somebody explain in simple method.

Thanks

Suppose that the initial condition $\displaystyle y(x_{0})= y_{0}$ is given and that $y(x)$ is analytic in $x_{0}$ so that is...

$\displaystyle y(x)= \sum_{ n=0}^{\infty} \frac{y^{(n)} (x_{0})}{n!}\ (x-x_{0})^{n}$ (1)

The $\displaystyle y^{(n)} (x_{0})$ are computed as follows...

$\displaystyle y^{(1)} = \frac {y}{x} \implies y^{(1)}(x_{0}) = \frac{y_{0}}{x_{0}}$

$\displaystyle y^{(2)} = \frac{y^{(1)}}{x}- \frac{y}{x^{2}} \implies y^{(2)}(x_{0}) = \frac{y_{0}}{x_{0}^{2}} - \frac{y_{0}}{x_{0}^{2}}=0$

$\displaystyle y^{(3)} = -2\ \frac{y^{(1)}}{x^{3}} + 2\ \frac{y}{x^{3}} \implies y^{(3)}(x_{0}) = -2\ \frac{y_{0}}{x_{0}^{3}} + 2\ \frac{y_{0}}{x_{0}^{3}}=0$

... and so one. The solution is the linear funcion $\displaystyle y = \frac{y_{0}}{x_{0}}\ x$ ...

$\chi$ $\sigma$
 
Last edited:
chisigma said:
Suppose that the initial condition $\displaystyle y(x_{0})= y_{0}$ is given and that $y(x)$ is analytic in $x_{0}$ so that is...

$\displaystyle y(x)= \sum_{ n=0}^{\infty} \frac{y^{(n)} (x_{0})}{n!}\ (x-x_{0})^{n}$ (1)

The $\displaystyle y^{(n)} (x_{0})$ are computed as follows...

$\displaystyle y^{(1)} = \frac {y}{x} \implies y^{(1)}(x_{0}) = \frac{y_{0}}{x_{0}}$

$\displaystyle y^{(2)} = \frac{y^{(1)}}{x}- \frac{y}{x^{2}} \implies y^{(2)}(x_{0}) = \frac{y_{0}}{x_{0}^{2}} - \frac{y_{0}}{x_{0}^{2}}=0$

$\displaystyle y^{(3)} = -2\ \frac{y^{(1)}}{x^{3}} + 2\ \frac{y}{x^{3}} \implies y^{(3)}(x_{0}) = -2\ \frac{y_{0}}{x_{0}^{3}} + 2\ \frac{y_{0}}{x_{0}^{3}}=0$

... and so one. The solution is the linear funcion $\displaystyle y = \frac{y_{0}}{x_{0}}\ x$ ...

$\chi$ $\sigma$

can you explain to me the first line?
 
dansingh said:
can you explain to me the first line?

Of course the first order DE...

$\displaystyle y^{\ '} = \frac{y}{x},\ y(x_{0}) = y_{0}\ (1)$... can be solved separain the variables and its soltion is $\displaystyle y=c\ x$...if Youy want to use the Frobenious method however, You must hypotize that $y(x)$ is analitic in $x_{0}$...Kind regards

$\chi$ $\sigma$
 
Last edited:
what is y(x) analytic in x0
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top