Solving Destructive Interference: Angle vs Wavelength

Click For Summary
The discussion focuses on the destructive interference equation for small angles, specifically angle = wavelength/(2a), where 'a' is the width. A user initially misapplied a double slit equation instead of the correct single slit equation, leading to a significant error in their wavelength calculation. After reviewing the relevant physics resource, they recognized the need to account for an additional factor of 2 and clarified their variables. By correctly applying the single slit equation, they recalculated the width and achieved a more accurate understanding of the interference patterns. The conversation emphasizes the importance of using the correct equations in physics problems.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
See attached
Relevant Equations
angle=wavelength/(2a)
The destructive interference equation for small angles is angle=wavelength/(2a), where a is the width. I assume it means destructive interference since its talking about areas where no light is present.

Using the equation after changing degrees into radians I get the answer of 2491 nm when the answer shoould be 9982 nm. the answer is approx. 4 times as large. Where am I going wrong here?
 

Attachments

  • question.PNG
    question.PNG
    7.3 KB · Views: 145
Physics news on Phys.org
BvU said:
Hi,

Study http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html to find a factor of 2 (basically: you have the wrong relevant equation) and consider that the exercise text (were you not to be bothered retyping it ?) talks about the second angle to find another factor of 2 ...

##\ ##
i see, I was using a double slit eqn instead of a single slit. Looking at your link, tanx=x=y/D.

So i don't know what y is nor d.

d=y/x=y/0.108 = 9.2593y

Now I can use y=(m*wavelength*D)/a to find width. m i assume is 2 because second angle measurement...

0.108d=(2*539 nm *d)/a

a=9981.4815

This is good. Thanks. I have more understanding over slits now that *hopefully* I won't just haphazardly use an equation that seems appropriate.
 
  • Like
Likes BvU and berkeman
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...