find_the_fun
- 147
- 0
Determine whether the given differential equation is exact. If it is, solve it.
[math](5x+4y)dx+(4x-8y^3)dy=0[/math]
So [math]M(x, y) = 5x+4y[/math] and [math]N(x, y)=4x-8y^3[/math]
Then [math]\frac{\partial M}{\partial Y} = 4[/math] and [math]\frac{\partial N}{\partial y} = 4[/math] therefore the equation is exact and there exists a function f such that
[math]\frac{\partial f}{\partial x} = 5x+4y[/math] and [math]\frac{ \partial f}{\partial y} = 4x-8y^3[/math]
[math]\int 5x+4 dx = \frac{5}{2}x^2+4xy=g(y) = f(x,y)[/math]
[math]\frac{\partial f}{\partial y} = 4x+g'(y) = 4x-8y^3[/math]
Now how do I solve for g(y)?
[math](5x+4y)dx+(4x-8y^3)dy=0[/math]
So [math]M(x, y) = 5x+4y[/math] and [math]N(x, y)=4x-8y^3[/math]
Then [math]\frac{\partial M}{\partial Y} = 4[/math] and [math]\frac{\partial N}{\partial y} = 4[/math] therefore the equation is exact and there exists a function f such that
[math]\frac{\partial f}{\partial x} = 5x+4y[/math] and [math]\frac{ \partial f}{\partial y} = 4x-8y^3[/math]
[math]\int 5x+4 dx = \frac{5}{2}x^2+4xy=g(y) = f(x,y)[/math]
[math]\frac{\partial f}{\partial y} = 4x+g'(y) = 4x-8y^3[/math]
Now how do I solve for g(y)?
Last edited: