MHB Solving for Optimal Advertising Units in Managerial Economics

  • Thread starter Thread starter HighAllegiant
  • Start date Start date
  • Tags Tags
    Economics
AI Thread Summary
The discussion focuses on maximizing sales through optimal advertising units in managerial economics, specifically using a regression analysis model. The solution for maximizing sales without constraints was found to be 15 units for TV and 20 units for magazines. However, when faced with a budget constraint of 31 units, the optimal advertising levels were determined to be 13 units for TV and 18 units for magazines. The use of the Lagrangian method was suggested for solving the constrained optimization problem, despite initial confusion over the absence of prices for the advertising units. Ultimately, the conversation highlights the challenges of applying theoretical methods to practical problems without complete information.
HighAllegiant
Messages
2
Reaction score
0
[SOLVED] Managerial Economics Problem

SOLVED

A firm has decided through regression analysis that its sales (S) are a function of the amount of advertising (measured in units) in two different media, television (x) and magazines (y):

S(x, y) = 100 – x
2 + 30x – y2 + 40y

(a) Find the level of TV and magazine advertising units that maximizes the firm's sales.
(b) Suppose that the advertising budget is restricted to 31 units. Determine the level of advertising (in units) that maximizes sales subject to this budget constraint.
(c) Give an economic interpretation for the value of the Lagrangian Multiplier obtained in part (b) above.

I already solved (a) by finding the derivative with respect to (x,y) and equating to 0.
(a) X* = 15, Y* = 20

My prof provided the answer to (b) and I have absolutely no idea to how he arrived at it.
I assumed the the Income(M)=31 but without any given prices for (x,y), I cannot seem to apply it into a Lagrangian method.
(I'm assuming I use the Lagrangian method because it was the most recent lecture to this question. (c) also asks a follow up question which requires the Langrangian multiplier.)
Could anyone help me?

(b) X* = 13, Y* = 18
 
Last edited:
Mathematics news on Phys.org
Try $x+y=31$, and plug this into your sales function, thus reducing it to a function of a single variable. The bounds on $x$, say, are $x\in[0,31]$. Use the standard Calculus I technique for maximization.
 
Thanks.
I just realized that I had been so used to my instructor's problems where he provides the prices for each product that I had no idea what to do when he doesn't give any prices.
(It works on problems which are similar to the one I just asked for.)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top