MHB Solving for simultaneous equations

Albert1
Messages
1,221
Reaction score
0
( i ) prove the following simultaneous equations (1) (2) and (3) has no real solution

$a+b+c=1-----(1)$

$a^2+b^2+c^2=2----(2)$

$a^3+b^3+c^3=3----(3)$

( ii ) using (1)(2)and(3)find the value of :

$a^4+b^4+c^4$
 
Last edited:
Mathematics news on Phys.org
Re: solving for simultaneous equations

Here's my solution to part (i). Not really the most elegant but gets it done. Solving eqn (1) for $c$ and substituting into the remaining two equations gives (with appropriate scaling)

$b^2 +(a-1)b +a^2-a-\dfrac{1}{2} = 0$

$(a-1)b^2+(a-1)^2b-a^2+a+\dfrac{2}{3}=0$

Eliminating $b$ between these two gives that $a$ satisfies the cubic

$6a^3-6a^2-3a-1 = 0$

Via a variety of techniques we can show that this cubic has only one real root and it's lies in the interval $(1,2)$ so $a > 1$.

Next we will show that the first equation for $b$ has complex roots for this value of $a$. To show this is to show that

$(a-1)^2 - 4(a^2-a-\dfrac{1}{2}) < 0$ or $-3a^2+2a+3 < 0$

As $a$ satisfies this cubic then

$-3a^2+2a+\dfrac{3}{2} = - \dfrac{1}{2a} - a + \dfrac{3}{2} < 0$ if $a > 1.$

The latter part can be established as follows: Let $f(a) =- \dfrac{1}{2a} - a + \dfrac{3}{2} $. Since $f(1) = 0$ and $f'(a) <0$ if $a>1$ then $f(a) < 0$ for $a>1$.
 
Re: solving for simultaneous equations

I'll take a stab at part (ii):

From the form of the given expressions, we may use an auxiliary equation of:

[math](r-a)(r-b)(r-c)=r^3-(a+b+c)r^2+(ab+ac+bc)r-abc=0[/math]

to determine the linear homogeneous recursion:

[math]S_{n+3}=(a+b+c)S_{n+2}-(ab+ac+bc)S_{n+1}+abcS_{n}[/math]

where we are given:

[math]S_1=1,\,S_2=2,\,S_3=3[/math]

If we square (1), we find:

$$(a^2+b^2+c^2)+2(ab+ac+bc)=1$$

Using (2), this becomes:

$$2+2(ab+ac+bc)=1$$

Hence:

$$ab+ac+bc=-\frac{1}{2}$$

If we cube (1), we find:

$$(a^3+b^3+c^3)+3(a+b+c)(ab+ac+bc)-3abc=1$$

Using (3) and our previous result, this becomes:

$$3-\frac{3}{2}-3abc=1$$

Hence:

$$abc=\frac{1}{6}$$

And so our recursion becomes:

[math]S_{n+3}=S_{n+2}+\frac{1}{2}S_{n+1}+\frac{1}{6}S_{n}[/math]

With $n=1$, we then find:

$$a^4+b^4+c^4=S_4=3+\frac{1}{2}\cdot2+\frac{1}{6} \cdot1=\frac{25}{6}$$
 
Last edited:
For me, this is an ideal opportunity to use Newton's identities.

Let $x^3- px^2 +qx - r = 0$ be the equation whose roots are $a,\ b,\ c$, and let $S_k = a^k+b^k+c^k \ (k=1,2,3,4)$. Newton's identities say that
$\phantom{1}p = S_1 = 1$,
$2q = pS_1 - S_2 = 1-2 = -1$,
$3r = qS_1 - pS_2 + S_3 = -\frac12 -2 +3 = \frac12$,
$\phantom{1}0 = rS_1 - qS_2 + pS_3 - S_4$.​

Thus $p=1$, $q = -\frac12$, $r = \frac16$, and the cubic equation is $x^3 - x^2 - \frac12x - \frac16 = 0$. That is the same equation that Jester found for $a$, and as he pointed out it only has one real root. So $a,\ b,\ c$ cannot all be real.

Finally the last of those Newton's identities above shows that $S_4 = \frac16 + 1+ 3 = \frac{25}6$.
 
( i )using the result from MarkFL :

$a+b+c=1,\,\,ab+bc+ca=\dfrac {-1}{2},\,\, abc=\dfrac {1}{6}$

$(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)=$$ \dfrac {1}{4}$

$\therefore a^2b^2+b^2c^2+c^2a^2=$$ \dfrac {1}{4} - 2abc(a+b+c)=\dfrac {1}{4} - \dfrac {1}{3}=\dfrac {-1}{12}<0$

This proves the first part :the simultaneous equationsno has no real solution

( ii )

$(2)^2:$$(a^2+b^2+c^2)^2=a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4$$\therefore a^4+b^4+c^4=4-2\times(\dfrac {-1}{12})=\dfrac {25}{6}$ #
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
1K
Replies
3
Views
1K
Replies
8
Views
1K
Replies
10
Views
941
Replies
7
Views
2K
Back
Top