Solving Geodesics with Metric $$ds^2$$

Click For Summary
SUMMARY

The discussion focuses on solving geodesics using the metric $$ds^2 = -dt^2 + dx^2 + 2a^2(t)dxdy + dy^2 + dz^2$$ with test bodies arranged in a circle at rest at $$t=0$$. Participants calculate the second derivative of the area of the circle $$S = \int{\sqrt{g^{(2)}}dxdy}$$ and express it using the Ricci tensor. They also explore the second derivative of the ratio of the diagonals $$D_1$$ and $$D_2$$ in terms of the Weyl tensor. Key issues include the correct application of the product rule in differentiation and the dependence of integration limits on time.

PREREQUISITES
  • Understanding of differential geometry and geodesics
  • Familiarity with Ricci and Weyl tensors
  • Proficiency in calculus, particularly in differentiation under the integral sign
  • Experience with Christoffel symbols and their applications in general relativity
NEXT STEPS
  • Study the derivation of geodesic equations using Christoffel symbols
  • Learn about the implications of the Ricci tensor in general relativity
  • Explore the concept of time-dependent limits in integrals
  • Investigate the relationship between the Weyl tensor and curvature in spacetime
USEFUL FOR

Mathematicians, physicists, and students of general relativity who are interested in the geometric interpretation of motion and the mathematical formulation of geodesics.

edoofir
Messages
6
Reaction score
1
I have the following question to solve:Use the metric:
$$ds^2 = -dt^2 +dx^2 +2a^2(t)dxdy + dy^2 +dz^2$$

Test bodies are arranged in a circle on the metric at rest at $$t=0$$.
The circle define as $$x^2 +y^2 \leq R^2$$

The bodies start to move on geodesic when we have $$a(0)=0$$

a. we have to calculate the second derivative of the area of the circle $$S = \int{\sqrt{g^(2)}dxdy}$$ respected to time and express your answer using the Ricci tensor.

b. calculate the second derivative respected to time of the ratio of the diagonals $D_1$ and $D_2$ and express it using Weyl tensor.

The Christoffel symbols:
$$ \Gamma^{t}_{xy} = \Gamma^{t}_{yx} = a(t)a'(t)$$
$$\Gamma^{x}_{tx} = \Gamma^{x}_{xt} = \frac{a^3(t)a'(t)}{a^4(t)-1} $$
$$\Gamma^{y}_{ty} = \Gamma^{y}_{yt} = \frac{a^3(t)a'(t)}{a^4(t)-1} $$
$$\Gamma^{x}_{ty} = \Gamma^{x}_{yt} = \frac{a(t)a'(t)}{1-a^4(t)} $$
$$\Gamma^{y}_{tx} = \Gamma^{y}_{xt} = \frac{a(t)a'(t)}{1-a^4(t)} $$

the Ricci tensors:

$$R_{tt} = \frac{2a^2(2a'^2 -aa''(a^4-1))}{(a^4-1)^2}$$
$$R_{xx} = R_{yy} = \frac{2a^2a'^2}{a^4-1}$$
$$R_{xy}=R_{yx} = a'^2 +aa''$$where $$a = a(t), a' = \frac{da}{dt}, a'' = \frac{d^2a}{dt}$$

and i calculated the second derivative of the area of the circle:
$$ \frac{ds^2}{dt^2} = \int{[\frac{d^2}{dt^2}\sqrt{1-a^4}dxdy + 2\frac{d}{dt}\sqrt{1-a^4}(\frac{dx}{dt}dy + dx\frac{dy}{dt})+\sqrt{1-a^4}(\frac{d^2x}{dt^2}dy+\frac{dx}{dt}\frac{dy}{dt}+dx\frac{d^2y}{dt^2})]} $$
I am not sure what should i do next. any suggestions?
1680466875788.png
 
Last edited:
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
You seem to have some sign errors in ##\Gamma^x_{ty}## and ##\Gamma^y_{tx}##.

I'm not sure how you got that expression for ##d^2S/dt^2##. What's your expression for ##S##? And what is the Ricci tensor and the geodesics followed by the test particles?
 
thank you for your reply.
I have calculated the Christoffel symbols using Mathmatica. are you sure there is a sign error? isn't it that: $$\Gamma^{y}_{ty} = \Gamma^{y}_{yt}$$?

If it's not the case i will try to calculate agin but it according to Mathmatica it should be the signs (else i don't understand what you ment).
Second, the expression for $S$ is: $$S = \int{\sqrt{g^(2)}dxdy}$$ as i mentiond.
 
Yes, the signs were just an overall sign that you lost - just a typo it seems, fine.

How are you getting from that expression for ##S## to the second derivative of area, was what I wanted to know. I was hoping you would show a few steps in the derivation.
 
i attach here the calculation in the photos.

This is how i understood to take the second derivative respected to time. I understood that dx and dy are also being effected.

I also show there the Geodesic equations i have calculated using the Christoffel symbols.
can you please explain what overall sign i lost in the Christoffel symbols?
 

Attachments

  • Screenshot_20230402_225810_Samsung Notes.jpg
    Screenshot_20230402_225810_Samsung Notes.jpg
    39.6 KB · Views: 171
  • Screenshot_20230402_225835_Samsung Notes.jpg
    Screenshot_20230402_225835_Samsung Notes.jpg
    38 KB · Views: 133
I'll double check my Christoffel symbols.

The problem with your approach to the derivative of the area is that I think the limits of integration are time dependent, so you need to carry out the integral before computing the derivative, I think.
 
  • Like
Likes   Reactions: edoofir
Rechecked my Christoffel symbols and you are correct - apologies. I missed that you'd taken the minus sign into the denominator.
 
  • Like
Likes   Reactions: edoofir
Thank you very much for responding. i am not sure i understood what you are saying about the derivative of the area. I carry the integral all the way.
the integration of the integral should be:
for y: $$ -\sqrt{R^2-x^2}<y<\sqrt{R^2-x^2}$$
and for x: $$-R<x<R$$

That's how i understad it so farm, so what do you mean by saying they are time dependent?
 
edoofir said:
i am not sure i understood what you are saying about the derivative of the area.
The point is that ##R## depends on ##t##, so I don't think ##\frac{d^2}{dt^2}\int\sqrt{g^{(2)}}dxdy## is the same as ##\int\frac{d^2}{dt^2}\sqrt{g^{(2)}}dxdy##.

In any case, do you have an expression for ##R(t)##?
 
  • #10
I understood it is not the same, this is why I used the derivation of a product rule and got the expression i got. (I attached a photo of how i got it).

Yes, i have expression for the Ricci tensors (if that's what you mean):

$$R_{tt} = \frac{2a^2(2a'^2 -aa''(a^4-1))}{(a^4-1)^2}$$
$$R_{xx} = R_{yy} = \frac{2a^2a'^2}{a^4-1}$$
$$R_{xy}=R_{yx} = a'^2 +aa''$$where $$a = a(t), a' = \frac{da}{dt}, a'' = \frac{d^2a}{dt}$$
 
  • #11
I'm struggling to read your screenshots on my phone. Deriving the geodesic equations myself, I now think that the particles do not change coordinates, so their positions always satisfy ##x^2+y^2=R^2## where ##R## is an arbitrary constant, nothing to do with any tensor.

I think you are supposed to be calculating the second derivative of the area enclosed by the ring of test particles, which is the region defined as ##x^2+y^2\leq R^2##. I don't understand why you don't do this integral directly - neither ##a## nor ##R## is a function of ##x## or ##y## so it looks to me to be trivial. Then you can simply differentiate; I assume this will lead you to something that looks like the Ricci scalar.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 76 ·
3
Replies
76
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
963
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K