MHB Solving Inequality 4x-12≤6x+20

  • Thread starter Thread starter gazparkin
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
To solve the inequality 4x - 12 ≤ 6x + 20, first rearrange the equation by moving all terms involving x to one side and constant terms to the other. This leads to 4x - 6x ≤ 20 + 12, simplifying to -2x ≤ 32. Dividing both sides by -2 reverses the inequality, yielding x ≥ -16. It is crucial to maintain the correct inequality sign throughout the process to ensure an accurate solution.
gazparkin
Messages
17
Reaction score
0
Hello,

I'm working on solving linear equalities (with equations) and can anyone help with the below question. I know the answer is -16, but I can't figure out the steps that gets it to this.

4x-12≤6x+20

Once I've evened out the x's on both sides and got this to 2x, I'm then left with -12 and +20, which leaves +8, divided by the remaining 2x, which leaves 4. This isn't correct though, so could anyone help me with the different stages on this.

Thank you!
 
Mathematics news on Phys.org
Hello gazparkin.

gazparkin said:
Once I've evened out the x's on both sides and got this to 2x, I'm then left with -12 and +20, which leaves +8, divided by the remaining 2x, which leaves 4.
You’re on the right line, but when you move the $20$ from the RHS to the LHS, you should have $-20$, not $+20$.

gazparkin said:
the answer is -16
The answer is not just -16. The answer involves $-16$, the variable $x$, and an inequality sign in between. It’s important to get the inequality sign right, or you won’t get any marks for the question.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K