Solving Integer Equations with $a$ and $b$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The discussion centers on finding all positive integers \(a\) and \(b\) such that both expressions \(\frac{a^2+b}{b^2-a}\) and \(\frac{b^2+a}{a^2-b}\) yield integer results. Participants express frustration over the complexity of the problem, indicating that previous attempts to solve it have been unsuccessful. The problem remains unsolved, highlighting the challenge it presents to those engaged in number theory.

PREREQUISITES
  • Understanding of integer equations and properties of integers
  • Familiarity with algebraic manipulation and rational expressions
  • Knowledge of number theory concepts
  • Experience with problem-solving strategies in mathematics
NEXT STEPS
  • Research techniques for solving integer equations in number theory
  • Explore the properties of rational expressions and their integer conditions
  • Study examples of similar problems involving positive integers
  • Learn about divisibility rules and their applications in algebra
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in solving complex integer equations will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all positive integers $a$ and $b$ such that $\dfrac{a^2+b}{b^2-a}$ and $\dfrac{b^2+a}{a^2-b}$ are both integers.
 
Mathematics news on Phys.org
This problem has gotten stuck in my head. This would be okay if I had any inkling of how to solve it. (I already went through all my ideas and they failed.) So this message is for anemone only. Open it at your own risk.

[sp]
Since you got the problem stuck into my head, this is my revenge!
IT'S A SMALL WORLD AFTER ALL IT'S A SMALL WORLD AFTER ALL IT'S A SMALL WORLD AFTER ALL IT'S A SMALL SMALL WORLD!

Now that that's stuck in your head I can finally relax.
[/sp]

-Dan
 
topsquark said:
[sp]
Since you got the problem stuck into my head, this is my revenge!
IT'S A SMALL WORLD AFTER ALL IT'S A SMALL WORLD AFTER ALL IT'S A SMALL WORLD AFTER ALL IT'S A SMALL SMALL WORLD!

Now that that's stuck in your head I can finally relax.
[/sp]
-Dan
I love that song! I first heard it in the Disney pavilion when I visited the New York World's Fair in 1965. Then in 1979 I took my kids to Disney World in Florida, and there it was again. Happy memories!
 
anemone said:
Find all positive integers $a$ and $b$ such that $\dfrac{a^2+b}{b^2-a}$ and $\dfrac{b^2+a}{a^2-b}$ are both integers.
The problem is symmetric in $a$ and $b$, so it will be sufficient to find all solutions with $a\leqslant b$. Let $b = a+c$, with $c\geqslant0$. Then $$\frac{a^2+b}{b^2-a} = \frac{a^2+a+c}{a^2 + (2c-1)a + c^2}, \qquad \frac{b^2+a}{a^2-b} = \frac{a^2 + (2c+1)a + c^2}{a^2-a-c} = 1 + \frac{(2c+2)a + c(c+1)}{a^2 - a - c}.$$ Case 1: $c=0$. Then both fractions become $\dfrac{a+1}{a-1}$, which is an integer when $a = 2$ or $3$ but not otherwise.

Case 2: $c=1$. Then the first fraction becomes $\dfrac{a^2+a+1}{a^2+a+1}$, which is obviously an integer for every $a$. The second fraction is $1 + \dfrac{4a+2}{a^2-a-1}$. That is an integer when $a = 1$ or $2$. It is not an integer if $a= 3,\ 4$ or $5$. And if $a\geqslant 6$ then $0 < \dfrac{4a+2}{a^2-a-1} < 1$. So there can be no more solutions in this case.

Case 3: $c>1$. Then in the fraction $\dfrac{a^2+a+c}{a^2 + (2c-1)a + c^2}$ the numerator is less than the denominator. So the fraction lies between $0$ and $1$ and is therefore not an integer.

Thus there are altogether six possible solutions, as follows: $$ \begin{array}{c|c|c}(a,b)&\frac{a^2+b}{b^2-a} & \frac{b^2+a}{a^2-b} \\ \hline (1,2) & 1 & -5 \\ (2,1) & -5&1 \\ (2,2) & 3&3 \\ (2,3) & 1& 11 \\ (3,2) & 11 & 1 \\ (3,3) & 2& 2 \end{array}$$
 
By the symmetry of the problem we may suppose $a\le b$. Notice that $b^2-1\ge 0$ so that if $\dfrac{a^2+b}{b^2-a}$ is a positive integer, then $a^2+b\ge b^2-a$. Rearranging this inequality and factoring we find that $(a+b)(a-b+1)\ge 0$. Since $a,\,b>0$, we must have $a\ge b-1$. We therefore have two cases:

Case 1: $a=b$. Substituting, we have
$\dfrac{a^2+a}{a^2-a}=\dfrac{a+1}{a-1}=1+\dfrac{2}{a-1}$, which is an integer iff $(a-1)|2$. As $a>0$, the only possible values are $a-1=1 \text{or} 2$. Hence, $(a,\,b)=(2,\,2)$ or $(3,\,3)$.

Case 2: $a=b-1$. Substituting, we have

$\dfrac{b^2+a}{a^2-b}=\dfrac{(a+1)^2+a}{a^2-(a+1)}=\dfrac{a^2+3a+1}{a^2-a-1}=1+\dfrac{4a+2}{a^2-a-1}$

Once again, notice that $4a+2>0$ and hence for $\dfrac{4a+2}{a^2-a-1}$ to be an integer, we must have $4a+2\ge a^2-a-1$, that is $a^2-5a-3\le 0$. Hence, since $a$ is an integer, we can bound $a$ by $1\le a \le 5$. Checking all ordered pairs, we find that only $(a,\,b)=(1,\,2)$ or $(2,\,3)$ satisfy the given conditions.

Thus, the ordered pairs that work are $(a,\,b)=(2,\,2),\,(3,\,3),\,(1,\,2),\,(2,\,3),\,(2,\,1),\,(3,\,2)$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
954
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K