Solving Laplace Transform: \[(s+1)^2/(s^2-s+1)\]

Click For Summary
SUMMARY

The discussion focuses on solving the Laplace Transform of the function \(\frac{(s+1)^2}{s^2 - s + 1}\). The transformation simplifies to \(H(s) = 1 + 3\frac{s - \frac{1}{2}}{(s - \frac{1}{2})^2 + \frac{3}{4}} + 3\frac{\frac{1}{2}}{(s - \frac{1}{2})^2 + \frac{3}{4}}\). The final time-domain function is derived as \(h(t) = \delta(t) + 3e^{\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t\right) + \sqrt{3}e^{\frac{t}{2}}\sin\left(\frac{\sqrt{3}}{2}t\right)\). The discussion emphasizes the importance of correctly applying the inverse Laplace Transform to achieve the final result.

PREREQUISITES
  • Understanding of Laplace Transforms and their properties
  • Familiarity with complex numbers and exponential functions
  • Knowledge of trigonometric identities and their applications in transforms
  • Ability to manipulate algebraic expressions involving polynomials
NEXT STEPS
  • Study the properties of the Laplace Transform, focusing on linearity and shifting
  • Learn about the inverse Laplace Transform techniques, including partial fraction decomposition
  • Explore applications of Laplace Transforms in solving differential equations
  • Investigate the use of the Heaviside function in Laplace Transform solutions
USEFUL FOR

Students and professionals in engineering, mathematics, and physics who are working with differential equations and need to apply Laplace Transforms for analysis and problem-solving.

Dustinsfl
Messages
2,217
Reaction score
5
\[
\frac{(s+1)^2}{s^2 - s + 1}
\]
I have simplified it down to
\[
\frac{s - \frac{1}{2} + s^2 + s + \frac{3}{2}}{(s - 1/2)^2 + \frac{3}{4}} =
e^{1/2t}\cos\Big(t\frac{\sqrt{3}}{2}\Big) + \sqrt{3}e^{1/2t}\sin\Big(t\frac{\sqrt{3}}{2}\Big) + \frac{s^2 + s}{(s - 1/2)^2 + \frac{3}{4}}
\]
but I can't figure out the last transform.
 
Physics news on Phys.org
dwsmith said:
\[
\frac{(s+1)^2}{s^2 - s + 1}
\]
I have simplified it down to
\[
\frac{s - \frac{1}{2} + s^2 + s + \frac{3}{2}}{(s - 1/2)^2 + \frac{3}{4}} =
e^{1/2t}\cos\Big(t\frac{\sqrt{3}}{2}\Big) + \sqrt{3}e^{1/2t}\sin\Big(t\frac{\sqrt{3}}{2}\Big) + \frac{s^2 + s}{(s - 1/2)^2 + \frac{3}{4}}
\]
but I can't figure out the last transform.

With symple steps You obtain...

$\displaystyle H(s) = \frac{(s+1)^{2}}{s^{2} - s + 1} = 1 + \frac{3\ s}{s^{2} - s + 1} = 1 + 3\ \frac{s - \frac{1}{2}}{(s - \frac{1}{2})^{2} + \frac{3}{4}} + 3\ \frac{\frac{1}{2}}{(s - \frac{1}{2})^{2} + \frac{3}{4}}\ (1) $

... and from (1) You derive...

$\displaystyle h(t) = \delta (t) + 3\ e^{\frac{t}{2}}\ \cos \frac{\sqrt{3}}{2}\ t + \sqrt{3}\ e^{\frac{t}{2}}\ \cos \frac{\sqrt{3}}{2}\ t\ (2)$

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K