MHB Solving Laplace Transform: \[(s+1)^2/(s^2-s+1)\]

Dustinsfl
Messages
2,217
Reaction score
5
\[
\frac{(s+1)^2}{s^2 - s + 1}
\]
I have simplified it down to
\[
\frac{s - \frac{1}{2} + s^2 + s + \frac{3}{2}}{(s - 1/2)^2 + \frac{3}{4}} =
e^{1/2t}\cos\Big(t\frac{\sqrt{3}}{2}\Big) + \sqrt{3}e^{1/2t}\sin\Big(t\frac{\sqrt{3}}{2}\Big) + \frac{s^2 + s}{(s - 1/2)^2 + \frac{3}{4}}
\]
but I can't figure out the last transform.
 
Physics news on Phys.org
dwsmith said:
\[
\frac{(s+1)^2}{s^2 - s + 1}
\]
I have simplified it down to
\[
\frac{s - \frac{1}{2} + s^2 + s + \frac{3}{2}}{(s - 1/2)^2 + \frac{3}{4}} =
e^{1/2t}\cos\Big(t\frac{\sqrt{3}}{2}\Big) + \sqrt{3}e^{1/2t}\sin\Big(t\frac{\sqrt{3}}{2}\Big) + \frac{s^2 + s}{(s - 1/2)^2 + \frac{3}{4}}
\]
but I can't figure out the last transform.

With symple steps You obtain...

$\displaystyle H(s) = \frac{(s+1)^{2}}{s^{2} - s + 1} = 1 + \frac{3\ s}{s^{2} - s + 1} = 1 + 3\ \frac{s - \frac{1}{2}}{(s - \frac{1}{2})^{2} + \frac{3}{4}} + 3\ \frac{\frac{1}{2}}{(s - \frac{1}{2})^{2} + \frac{3}{4}}\ (1) $

... and from (1) You derive...

$\displaystyle h(t) = \delta (t) + 3\ e^{\frac{t}{2}}\ \cos \frac{\sqrt{3}}{2}\ t + \sqrt{3}\ e^{\frac{t}{2}}\ \cos \frac{\sqrt{3}}{2}\ t\ (2)$

Kind regards

$\chi$ $\sigma$
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
5
Views
3K
Replies
17
Views
3K
Replies
3
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top