MHB Solving Limit as x approaches 3 using Multiplication and Division

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
To solve the limit as x approaches 3 for the expression involving square roots, it's suggested to multiply both the numerator and denominator by the conjugate of the numerator, which is $\sqrt{6x - 14} + \sqrt{x + 1}$. This approach helps eliminate the square roots and simplifies the expression. The discussion emphasizes that x - 3 is indeed a factor in the numerator, and making it explicit aids in the simplification process. Ultimately, this method leads to a clearer path for evaluating the limit. The conversation concludes with the participant expressing understanding of the solution.
tmt1
Messages
230
Reaction score
0
I have to solve this limit.

$$\lim_{{x}\to{3}} \frac{\sqrt{6x - 14} - \sqrt{x + 1}}{x -3}$$

Now, I think that by definition x - 3 is a divisor of the numerator, but how do I advance from here? Do I do long division?
 
Mathematics news on Phys.org
tmt said:
I have to solve this limit.

$$\lim_{{x}\to{3}} \frac{\sqrt{6x - 14} - \sqrt{x + 1}}{x -3}$$

Now, I think that by definition x - 3 is a divisor of the numerator, but how do I advance from here? Do I do long division?

How about making the x - 3 in the numerator explicit?
What do you get if you multiply both numerator and denominator by $\sqrt{6x - 14} + \sqrt{x + 1}$?
 
I like Serena said:
How about making the x - 3 in the numerator explicit?
What do you get if you multiply both numerator and denominator by $\sqrt{6x - 14} + \sqrt{x + 1}$?

Okay thanks, now I got it.
 

Similar threads

Replies
16
Views
739
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
3K