MHB Solving Limit as x approaches 3 using Multiplication and Division

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Limit
AI Thread Summary
To solve the limit as x approaches 3 for the expression involving square roots, it's suggested to multiply both the numerator and denominator by the conjugate of the numerator, which is $\sqrt{6x - 14} + \sqrt{x + 1}$. This approach helps eliminate the square roots and simplifies the expression. The discussion emphasizes that x - 3 is indeed a factor in the numerator, and making it explicit aids in the simplification process. Ultimately, this method leads to a clearer path for evaluating the limit. The conversation concludes with the participant expressing understanding of the solution.
tmt1
Messages
230
Reaction score
0
I have to solve this limit.

$$\lim_{{x}\to{3}} \frac{\sqrt{6x - 14} - \sqrt{x + 1}}{x -3}$$

Now, I think that by definition x - 3 is a divisor of the numerator, but how do I advance from here? Do I do long division?
 
Mathematics news on Phys.org
tmt said:
I have to solve this limit.

$$\lim_{{x}\to{3}} \frac{\sqrt{6x - 14} - \sqrt{x + 1}}{x -3}$$

Now, I think that by definition x - 3 is a divisor of the numerator, but how do I advance from here? Do I do long division?

How about making the x - 3 in the numerator explicit?
What do you get if you multiply both numerator and denominator by $\sqrt{6x - 14} + \sqrt{x + 1}$?
 
I like Serena said:
How about making the x - 3 in the numerator explicit?
What do you get if you multiply both numerator and denominator by $\sqrt{6x - 14} + \sqrt{x + 1}$?

Okay thanks, now I got it.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top