MHB Solving Linear Systems with a Variable: How to Handle Unknown Constants?

delc1
Messages
9
Reaction score
0
Hello,

I am stuck on a question for some time now and I am unsure how to solve this. I have tried the substitution and gaussian elimination methods but have had no luck at all.

Identify the value(s) of k for which the following linear system
x + 2y + z = 2
2x − 2y + 3z = 1
x + 3y + (k^2 − 3)z = k
has:
(i) no solutions
(ii) one solution
(iii) infinitely many solutions

I am particularly having trouble with the variable 'k'. I am not sure how to handle it?
 
Physics news on Phys.org
We have the following:

$$\begin{pmatrix}
1 & 2 & 1\\
2 & -2 & 3\\
1 & 3 & k^2-3
\end{pmatrix}\begin{pmatrix}
x\\
y\\
z
\end{pmatrix}=\begin{pmatrix}
2\\
1\\
k
\end{pmatrix}
$$

Applying gaussian elimination we have the following:

(Let $(a)$ be the first line, $(b)$ the second and $(c)$ the third one.)

$$\begin{pmatrix}
1 & 2 & 1 & | & 2\\
2 & -2 & 3 & | & 1\\
1 & 3 & k^2-3 & | & k
\end{pmatrix} \overset{(b)'=(b)-2(a), (c)'=(c)-(a)}{ \longrightarrow } \begin{pmatrix}
1 & 2 & 1 & | & 2\\
0 & -6 & 1 & | & -3\\
0 & 1 & k^2-4 & | & k-2
\end{pmatrix} \overset{(c)''=6(c)'+(b)}{ \longrightarrow } \begin{pmatrix}
1 & 2 & 1 & | & 2\\
0 & -6 & 1 & | & -3\\
0 & 0 & 6k^2-23 & | & 6k-15
\end{pmatrix} $$

When we get from the last line $0=0$ we have infinitely many solutions, so when $6k^2-23=0$ AND $6k-15=0$.

When only one of the two is zero ($6k^2-23=0$ OR $6k-15=0$ but not both) we have no solutions.

In any other case we have one solution.
 
mathmari said:
We have the following:
When only one of the two is zero ($6k^2-23=0$ OR $6k-15=0$ but not both) we have no solutions.

Wouldn't there only be no solutions when the second last column in the bottom row of this matrix equeled 0?

If we found k such that $6k-15=0$, then one of the equations would be:

0x + 0y + 6k2-23z = 0

and since z can be 0, this would result in a solution?

Every text I've read says it must be when the last non-zero row of [U|c] ends with c, where c != 0, that there is no solutions and nothing about when there is another row which also has an unknown constant, for instance k, which is in both the final column in the last non-zero row and another column in the same row.

Please correct me if I am wrong
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top