MHB Solving Logarithmic Equations: Expert Help with Different Bases

  • Thread starter Thread starter lastochka
  • Start date Start date
  • Tags Tags
    Logarithmic
Click For Summary
To solve the equation ${2}^{2x+19}={3}^{x-31}$, taking the natural logarithm of both sides is essential. By applying the logarithmic identity, the equation transforms into $(2x+19)\ln(2)=(x-31)\ln(3)$. After correctly distributing the logarithms and rearranging, the solution for x is derived as $x=\frac{-31\ln(3)-19\ln(2)}{2\ln(2)-\ln(3)}$. The final computed value of x is approximately -164.163, confirming the solution's accuracy. This method effectively addresses logarithmic equations with different bases.
lastochka
Messages
29
Reaction score
0
Hello,

I am trying to solve this, but the bases are different and I am not sure how to proceed with it...
Solve the following equation. If necessary, enter your answer as an expression involving natural logarithms or as a decimal approximation that is correct to at least four decimal places.

${2}^{2x+19}$=${3}^{x-31}$

Please, help!
Thank you
 
Mathematics news on Phys.org
Try taking the natural log of both sides, then apply the rule:

$$\log_a\left(b^c\right)=c\log_a(b)$$

What do you get...can you now solve for $x$?
 
Thank you for the answer, but I am still not sure...
Here is what I did
$\ln\left({{2}^{2x+19}}\right)$=$\ln\left({{3}^{x-31}}\right)$

2x+19$\ln\left({2}\right)$=x-31$\ln\left({3}\right)$

x=$\frac{-31$\ln\left({3}\right)}{-19$\ln\left({2}\right)}$

x=2.58599

But the answer is incorrect.
Please, let me know what am I doing wrong
 
Okay, after applying the log rule I posted, you should have:

$$(2x+19)\ln(2)=(x-31)\ln(3)$$

Upon distribution of the logs, you then get:

$$2x\ln(2)+19\ln(2)=x\ln(3)-31\ln(3)$$

Now try solving for $x$...:D
 
Yes, thank you! I just realized that I didn't do another step...must be tired...
Here what I have so far
2lnx-xln3=-31ln3-19ln2

x(2ln2) - (ln3)=-31ln3-19ln2

x=$\frac{-31ln3-19ln2}{2ln2-ln3}$

x=-164.163

I checked, the answer is right.
MarkFL, thank you so much for help!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K