Solving PDE by using another function

  • Context: MHB 
  • Thread starter Thread starter Markov2
  • Start date Start date
  • Tags Tags
    Function Pde
Click For Summary

Discussion Overview

The discussion revolves around solving a partial differential equation (PDE) of the form \( u_{tt} = c^2 u_{xx} + A e^{-x} \) with specified boundary and initial conditions. Participants explore methods for homogenizing the equation and boundary conditions, as well as the implications of these transformations on the solution process.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests introducing a new variable \( v(t,x) \) to transform the original function \( u(t,x) \) and homogenize the boundary conditions.
  • Another participant proposes defining \( w(x,t) = u(x,t) - v(x,t) \) to satisfy the boundary conditions, seeking clarification on this approach.
  • A later reply discusses solving the homogeneous problem using separation of variables and expanding the non-homogeneous source term in terms of a Fourier sine series.
  • One participant describes their process of homogenizing the equation by adjusting \( v(x,t) \) and expresses concern about the non-zero initial condition for \( v(x,0) \) and whether further adjustments are needed.
  • Another participant reflects on their earlier confusion and indicates they have resolved their issues after reviewing their notes.

Areas of Agreement / Disagreement

Participants express various methods for approaching the problem, with no consensus on the best procedure for homogenizing the equation and boundary conditions. The discussion remains unresolved regarding the optimal approach.

Contextual Notes

Participants note the complexity of the problem and the need for careful consideration of boundary conditions and initial conditions when transforming the PDE. There are unresolved concerns about the implications of non-zero initial conditions on the solution process.

Markov2
Messages
149
Reaction score
0
Solve

$\begin{aligned} & {{u}_{tt}}={{c}^{2}}{{u}_{xx}}+A{{e}^{-x}},\text{ }0<x<L,\text{ }t>0, \\
& u(0,t)=B,\text{ }u(L,t)=M,\text{ }t>0, \\
& u(x,0)=0={{u}_{t}}(x,0),\text{ 0}<x<L.
\end{aligned}
$

What do I need to do first? Homogenize the first boundary conditions? Or first making the equation homogeneous? What's the shorter way?
 
Physics news on Phys.org
First, introduce a new variable $v(t,x)$ such that $u(t,x) = v(t,x) + ax + b$ and choose $a$ and $b$ such that

$u(0,t)=B$ becomes $v(0,t) = 0$

and

$u(L,t)=M$ becomes $v(L,t) = 0$.

Then see how the PDE and IC's change.
 
Okay you mean take $w(x,t)=u(x,t)-v(x,t)$ where $v(x,t)=B-(B-M)\dfrac xL,$ then $w(x,t)$ satisfies the first boundary conditions, is this the procedure?
 
Next, to solve the homogenous problem

$w_{tt} = c^2 w_{xx}$

$w(0,t) = 0, w(L,t) = 0$

you would use separation of variables leading to

$u = \displaystyle\sum_{n=1}^{\infty} b_n \sin \dfrac{c n \pi}{L}t \sin \dfrac{n\pi}{L}x$.

However, since the new PDE is nonhomogeneous, you'll need to expand the source term (the exponential) in terms of a Fourier sine series and then seek a solution of the form

u = $\displaystyle\sum_{n=1}^{\infty} T_n(t) \sin \dfrac{n\pi}{L}x$.

See where that takes you.
 
Okay, it looks a bit messy from there. I homogenized first the equation, so I let $v(x,t)=u(x,t)+\dfrac{A{{e}^{-x}}}{{{c}^{2}}}$ so that $u(x,t)=v(x,t)-\dfrac A{c^2}e^{-x}$ then $u_{tt}=v_{tt}$ and $u_x=v_x+\dfrac A{c^2}e^{-x}$ and $u_{xx}=v_{xx}-\dfrac A{c^2}e^{-x}$ so replacing this to the ODE I get $v_{tt}=c^2\left(v_{xx}-\dfrac A{c^2}e^{-x}\right)+Ae^{-x}=c^2v_{xx}.$ Now the boundaries are $u(0,t)=v(0,t)-\dfrac A{c^2}=B$ so $v(0,t)=B+\dfrac A{c^2}$ and $u(L,t)=v(L,t)-\dfrac A{c^2}e^{-L}=M$ so $v(L,t)=M+\dfrac A{c^2}e^{-L}$ and finally $u(x,0)=v(x,0)-\dfrac A{c^2}e^{-x}=0\implies v(x,0)=\dfrac A{c^2}e^{-x}$ and $u_t(x,0)=v_t(x,0)$ so the new equation equals:

$\begin{aligned} & {{v}_{tt}}={{c}^{2}}{{v}_{xx}} \\
& v(0,t)=B+\frac{A}{{{c}^{2}}},\text{ }v(L,t)=M+\frac{A}{{{c}^{2}}}{{e}^{-L}} \\
& v(x,0)=\frac{A}{{{c}^{2}}}{{e}^{-x}},\text{ }{{v}_{t}}(x,0)=0.
\end{aligned}
$

Do I need to define another function to homogenize boundary conditions? I'm worry about this since the $v(x,0)$ condition is not zero, how to proceed? Am I on the right track?
 
I managed to get it. I was drowning myself on a glass of water, I hadn't checked my notes. Thanks for the help anyway!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K