Solving PDE by using Laplace Transform

Click For Summary
SUMMARY

The discussion focuses on solving the partial differential equation (PDE) given by \( u_t = u_{xx} \) using the Laplace Transform. The user correctly applies the Laplace Transform, denoting \( u(x,s) = \mathcal{L}(u(x,\cdot))(s) \), leading to the equation \( \frac{\partial^2 u(x,s)}{\partial x^2} - s \cdot u(x,s) = -u_0 \). The solution derived is \( u(x,s) = c_1 e^{-\sqrt{s}x} + c_2 e^{\sqrt{s}x} + \frac{u_0}{s} \). The user is advised to use the Initial Value Theorem to find the constants \( c_1 \) and \( c_2 \) and then perform the inverse Laplace Transform to obtain the final solution.

PREREQUISITES
  • Understanding of Laplace Transforms and their properties
  • Familiarity with solving partial differential equations (PDEs)
  • Knowledge of the Initial Value Theorem in the context of Laplace Transforms
  • Basic concepts of boundary conditions in PDEs
NEXT STEPS
  • Study the application of the Initial Value Theorem in Laplace Transforms
  • Learn about boundary conditions and their implications in PDE solutions
  • Explore the process of finding inverse Laplace Transforms
  • Review examples of solving PDEs using Laplace Transforms for different initial conditions
USEFUL FOR

Mathematicians, physicists, and engineering students focusing on differential equations, particularly those interested in the application of Laplace Transforms to solve PDEs.

Markov2
Messages
149
Reaction score
0
Given

$\begin{aligned} & {{u}_{t}}={{u}_{xx}},\text{ }x>0,\text{ }t>0 \\
& u(x,0)={{u}_{0}}, \\
& {{u}_{x}}(0,t)=u(0,t).
\end{aligned}
$

I need to apply the Laplace transform to solve it. I'll denote $u(x,s)=\mathcal L(u(x,\cdot))(s),$ so for the first line I have $s\cdot u(x,s)-u(x,0)=\dfrac{\partial^2 u(x,s)}{\partial x^2},$ now here's my problem, when I did this problem my professor told me I can't apply the transform to the condition $u(x,0)$ why? Well after this for the third line I have $\dfrac{\partial u(x,s)}{\partial x}-u(0,s)=0$ (1). So we have to solve $\dfrac{{{\partial }^{2}}u(x,s)}{\partial {{x}^{2}}}-s\cdot u(x,s)=-{{u}_{0}}$ which gives a a solution $u(x,s)=c_1e^{-\sqrt sx}+c_2e^{\sqrt sx}+\dfrac{u_0}s$ (2).

Now do I need to use (2) and (1) to find the constants? And after that I need to find the inverse Laplace transform, so far, is it correct?
Thanks!
 
Physics news on Phys.org
Markov said:
Given

$\begin{aligned} & {{u}_{t}}={{u}_{xx}},\text{ }x>0,\text{ }t>0 \\
& u(x,0)={{u}_{0}}, \\
& {{u}_{x}}(0,t)=u(0,t).
\end{aligned}
$

I need to apply the Laplace transform to solve it. I'll denote $u(x,s)=\mathcal L(u(x,\cdot))(s),$ so for the first line I have $s\cdot u(x,s)-u(x,0)=\dfrac{\partial^2 u(x,s)}{\partial x^2},$ now here's my problem, when I did this problem my professor told me I can't apply the transform to the condition $u(x,0)$ why?

You could, actually, but it wouldn't gain you anything. There's no $t$ dependence in that equation anywhere.

Well after this for the third line I have $\dfrac{\partial u(x,s)}{\partial x}-u(0,s)=0$ (1). So we have to solve $\dfrac{{{\partial }^{2}}u(x,s)}{\partial {{x}^{2}}}-s\cdot u(x,s)=-{{u}_{0}}$ which gives a a solution $u(x,s)=c_1e^{-\sqrt sx}+c_2e^{\sqrt sx}+\dfrac{u_0}s$ (2).

Now do I need to use (2) and (1) to find the constants? And after that I need to find the inverse Laplace transform, so far, is it correct?
Thanks!

You can always plug solutions into the DE to verify that they are correct. I would say they are, and yes, you need to do the inverse LT to find the final solution.
 
Okay but, do I need to find the inverse now for (2) and that's all?
 
Use the Initial Value Theorem on $u(x,0)=u_{0}$, and (2), to obtain $c_{1}$ and $c_{2}$. Then take the Inverse LT, and you're done.
 
If I use $u(x,s)$ at $s=0,$ then (2) will give me problems with the third term. :(
 
Markov said:
If I use $u(x,s)$ at $s=0,$ then (2) will give me problems with the third term. :(

But when you use the IVT, you're not taking the limit as $s\to 0$, but as $s\to\infty$. The word initial refers to the time domain, not the frequency domain. Also keep in mind that you're imposing the IVT as a condition. Incidentally, your (1) really ought to be

$$\frac{\partial u(x,s)}{\partial x}\Bigg|_{x=0}=u(0,s).$$
 
Oh yes, that now makes sense!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K