MHB Solving PDE by using Laplace Transform

Click For Summary
The discussion focuses on solving the partial differential equation (PDE) using the Laplace transform. The user encounters confusion regarding the application of the Laplace transform to the initial condition, specifically why it may not be beneficial to transform \( u(x,0) \). It is clarified that the initial value theorem should be applied to determine constants \( c_1 \) and \( c_2 \) from the derived solution. The importance of correctly interpreting the initial conditions in the context of Laplace transforms is emphasized, particularly that the initial condition refers to the time domain. The user is guided to take the inverse Laplace transform to obtain the final solution after determining the constants.
Markov2
Messages
149
Reaction score
0
Given

$\begin{aligned} & {{u}_{t}}={{u}_{xx}},\text{ }x>0,\text{ }t>0 \\
& u(x,0)={{u}_{0}}, \\
& {{u}_{x}}(0,t)=u(0,t).
\end{aligned}
$

I need to apply the Laplace transform to solve it. I'll denote $u(x,s)=\mathcal L(u(x,\cdot))(s),$ so for the first line I have $s\cdot u(x,s)-u(x,0)=\dfrac{\partial^2 u(x,s)}{\partial x^2},$ now here's my problem, when I did this problem my professor told me I can't apply the transform to the condition $u(x,0)$ why? Well after this for the third line I have $\dfrac{\partial u(x,s)}{\partial x}-u(0,s)=0$ (1). So we have to solve $\dfrac{{{\partial }^{2}}u(x,s)}{\partial {{x}^{2}}}-s\cdot u(x,s)=-{{u}_{0}}$ which gives a a solution $u(x,s)=c_1e^{-\sqrt sx}+c_2e^{\sqrt sx}+\dfrac{u_0}s$ (2).

Now do I need to use (2) and (1) to find the constants? And after that I need to find the inverse Laplace transform, so far, is it correct?
Thanks!
 
Physics news on Phys.org
Markov said:
Given

$\begin{aligned} & {{u}_{t}}={{u}_{xx}},\text{ }x>0,\text{ }t>0 \\
& u(x,0)={{u}_{0}}, \\
& {{u}_{x}}(0,t)=u(0,t).
\end{aligned}
$

I need to apply the Laplace transform to solve it. I'll denote $u(x,s)=\mathcal L(u(x,\cdot))(s),$ so for the first line I have $s\cdot u(x,s)-u(x,0)=\dfrac{\partial^2 u(x,s)}{\partial x^2},$ now here's my problem, when I did this problem my professor told me I can't apply the transform to the condition $u(x,0)$ why?

You could, actually, but it wouldn't gain you anything. There's no $t$ dependence in that equation anywhere.

Well after this for the third line I have $\dfrac{\partial u(x,s)}{\partial x}-u(0,s)=0$ (1). So we have to solve $\dfrac{{{\partial }^{2}}u(x,s)}{\partial {{x}^{2}}}-s\cdot u(x,s)=-{{u}_{0}}$ which gives a a solution $u(x,s)=c_1e^{-\sqrt sx}+c_2e^{\sqrt sx}+\dfrac{u_0}s$ (2).

Now do I need to use (2) and (1) to find the constants? And after that I need to find the inverse Laplace transform, so far, is it correct?
Thanks!

You can always plug solutions into the DE to verify that they are correct. I would say they are, and yes, you need to do the inverse LT to find the final solution.
 
Okay but, do I need to find the inverse now for (2) and that's all?
 
Use the Initial Value Theorem on $u(x,0)=u_{0}$, and (2), to obtain $c_{1}$ and $c_{2}$. Then take the Inverse LT, and you're done.
 
If I use $u(x,s)$ at $s=0,$ then (2) will give me problems with the third term. :(
 
Markov said:
If I use $u(x,s)$ at $s=0,$ then (2) will give me problems with the third term. :(

But when you use the IVT, you're not taking the limit as $s\to 0$, but as $s\to\infty$. The word initial refers to the time domain, not the frequency domain. Also keep in mind that you're imposing the IVT as a condition. Incidentally, your (1) really ought to be

$$\frac{\partial u(x,s)}{\partial x}\Bigg|_{x=0}=u(0,s).$$
 
Oh yes, that now makes sense!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K