MHB Solving Point of Tangency for AP Calculus BC Problem

Click For Summary
To solve the AP Calculus BC problem, the derivative of the curve is given by y'=(4x-2xy)/(x^2+y^2+1). The line through the origin with slope -1 is represented by y=-x, which leads to the condition y'=-1 at point P. By substituting this condition into the ODE, the equation simplifies to 4x+2x^2=-2x^2-1, resulting in the quadratic equation 4x^2+4x+1=0. Solving this yields x=-1/2, and consequently, y=1/2, giving the coordinates of point P as (-1/2, 1/2). The solution is confirmed with a plot of the curve and the tangent line.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do you solve this AP calculus BC problem?


y'=(4x-2xy)/(x^2+y^2+1)

The line through the origin with slope -1 is tangent to the curve at point P. Find the x and y coordinates of the point P. Thank you!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Kim,

First, we know the line through the origin, having slope $m=-1$ is given by:

$$y=-x$$

and we know at point $P(x,y)$, we must then have:

$$y'=-1$$

Using these two conditions, we then find, using the given ODE:

$$y'=\frac{4x+2x^2}{2x^2+1}=-1$$

Solving for $x$, we then obtain:

$$4x+2x^2=-2x^2-1$$

$$4x^2+4x+1=0$$

$$(2x+1)^2=0$$

$$x=-\frac{1}{2}\implies y=\frac{1}{2}$$

Hence:

$$P(x,y)=\left(-\frac{1}{2},\frac{1}{2} \right)$$

Here is a plot of the curve described by the ODE and the tangent line:

View attachment 1430
 

Attachments

  • kim.jpg
    kim.jpg
    5.8 KB · Views: 88
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K