MHB Solving Random Variable Work: 0 to Infinity = 0.002?

AI Thread Summary
The integration from 0 to infinity is correctly set up to find the constant C, equating it to 1. The calculations show that C equals 0.0021, not 0.002 as initially suggested. The method used for integration and the exponential function is validated by the responses in the discussion. The final value of C is crucial for further applications in probability and statistics. Accurate computation of constants in random variable work is essential for correct results.
Uniman
Messages
11
Reaction score
0
View attachment 432

Work done so far...

Integrating from 0 to infinity and equating it to 1, we get

(c/2*10^-3) = 1

c= 2/1000

=0.002

Is it correct?
http://www.chegg.com/homework-help/questions-and-answers/-q3136942#
 

Attachments

  • Screen Shot 2012-10-31 at 6.49.47 PM.png
    Screen Shot 2012-10-31 at 6.49.47 PM.png
    4.5 KB · Views: 91
Physics news on Phys.org
Uniman said:
https://www.physicsforums.com/attachments/432

Work done so far...

Integrating from 0 to infinity and equating it to 1, we get

(c/2*10^-3) = 1

c= 2/1000

=0.002

Is it correct?
http://www.chegg.com/homework-help/questions-and-answers/-q3136942#


Hi Uniman, :)

Yes the method you have used is correct.

\[\int_{0}^{\infty}C\,\mbox{exp}\left(-\frac{2.1x}{1000}\right)dx=1\]

\[\Rightarrow C\left[-\frac{1000}{2.1}\mbox{exp}\left(-\frac{2.1x}{1000}\right)\right]^{\infty}_{0}=1\]

\[\Rightarrow \frac{1000}{2.1}C=1\]

\[\therefore C=\frac{2.1}{1000}=0.0021\]

Kind Regards,
Sudharaka.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top