MHB Solving Random Variable Work: 0 to Infinity = 0.002?

Uniman
Messages
11
Reaction score
0
View attachment 432

Work done so far...

Integrating from 0 to infinity and equating it to 1, we get

(c/2*10^-3) = 1

c= 2/1000

=0.002

Is it correct?
http://www.chegg.com/homework-help/questions-and-answers/-q3136942#
 

Attachments

  • Screen Shot 2012-10-31 at 6.49.47 PM.png
    Screen Shot 2012-10-31 at 6.49.47 PM.png
    4.5 KB · Views: 84
Physics news on Phys.org
Uniman said:
https://www.physicsforums.com/attachments/432

Work done so far...

Integrating from 0 to infinity and equating it to 1, we get

(c/2*10^-3) = 1

c= 2/1000

=0.002

Is it correct?
http://www.chegg.com/homework-help/questions-and-answers/-q3136942#


Hi Uniman, :)

Yes the method you have used is correct.

\[\int_{0}^{\infty}C\,\mbox{exp}\left(-\frac{2.1x}{1000}\right)dx=1\]

\[\Rightarrow C\left[-\frac{1000}{2.1}\mbox{exp}\left(-\frac{2.1x}{1000}\right)\right]^{\infty}_{0}=1\]

\[\Rightarrow \frac{1000}{2.1}C=1\]

\[\therefore C=\frac{2.1}{1000}=0.0021\]

Kind Regards,
Sudharaka.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top