Solving Recurrence Relations using Fibonacci Sequence

  • Context: MHB 
  • Thread starter Thread starter stanyeo1984
  • Start date Start date
  • Tags Tags
    Recurrence Relation
Click For Summary
SUMMARY

The discussion focuses on solving recurrence relations using the Fibonacci sequence, specifically deriving closed formulas for generating functions. Part (a) involves defining the generating function F(z) for Fibonacci numbers, leading to a closed formula. Part (b) presents a recurrence relation an = 19 (F0 an−1 + F1 an−2 + ... + Fn−1 a0) with a0 = 9, requiring the derivation of the generating function A(z). Part (c) seeks an explicit formula for the sequence an, emphasizing the importance of convergence in generating functions.

PREREQUISITES
  • Understanding of Fibonacci sequence and its recurrence relation
  • Knowledge of generating functions in combinatorial mathematics
  • Familiarity with closed-form expressions and their derivation
  • Basic skills in mathematical analysis and convergence concepts
NEXT STEPS
  • Study the derivation of closed formulas for generating functions in combinatorial contexts
  • Explore advanced recurrence relations and their applications in algorithm design
  • Learn about convergence criteria for generating functions and their implications
  • Investigate the relationship between generating functions and series expansions
USEFUL FOR

Mathematicians, computer scientists, and students in advanced mathematics courses focusing on recurrence relations, generating functions, and combinatorial analysis.

stanyeo1984
Messages
13
Reaction score
0
Recall that the Fibonacci sequence is defined by the initial conditions F0 = 0 and
F1 = 1, and the recurrence relation Fn = Fn−1 + Fn−2 for n > 2.
(a) Let F(z) = F0 + F1z + F2z
2 + F3z
3 + · · · be the generating function of the
Fibonacci numbers. Derive a closed formula for F(z).
(b) Consider the recurrence relation an = 19 (F0 an−1 + F1 an−2 + · · · + Fn−1 a0),
n > 1 with a0 = 9. Derive a closed formula for the generating function A(z)
of the sequence an.
(c) Find an explicit formula for an.
 
Physics news on Phys.org
stanyeo1984 said:
Recall that the Fibonacci sequence is defined by the initial conditions F0 = 0 and
F1 = 1, and the recurrence relation Fn = Fn−1 + Fn−2 for n > 2.
(a) Let F(z) = F0 + F1z + F2z
2 + F3z
3 + · · · be the generating function of the
Fibonacci numbers. Derive a closed formula for F(z).
What is your series? First you say "Let F(z) = F0 + F1z + F2z" but then what do the next two lines have to do with it? "2 + F3z, 3 + ... What do these lines mean?

-Dan
 
topsquark said:
What is your series? First you say "Let F(z) = F0 + F1z + F2z" but then what do the next two lines have to do with it? "2 + F3z, 3 + ... What do these lines mean?

-Dan

Recall that the Fibonacci sequence is defined by the initial conditions F0 = 0 and
F1 = 1, and the recurrence relation Fn= Fn-1 + Fn-2 for n >= 2.

(a) Let F(z) = F0 +F1z + F2z2 + F3z3 + ··· be the generating function of the
Fibonacci numbers. Derive a closed formula for F(z).

(b) Consider the recurrence relation an = 19 (F0an-1 + F1an-2 + · · · + Fn-1a0), n >= 1 with a0= 9. Derive a closed formula for the generating function A(z) of the sequence an.

(c) Find an explicit formula for an.
 
stanyeo1984 said:
Recall that the Fibonacci sequence is defined by the initial conditions F0 = 0 and
F1 = 1, and the recurrence relation Fn= Fn-1 + Fn-2 for n >= 2.

(a) Let F(z) = F0 +F1z + F2z2 + F3z3 + ··· be the generating function of the
Fibonacci numbers. Derive a closed formula for F(z).

(b) Consider the recurrence relation an = 19 (F0an-1 + F1an-2 + · · · + Fn-1a0), n >= 1 with a0= 9. Derive a closed formula for the generating function A(z) of the sequence an.

(c) Find an explicit formula for an.

I've solved part a

anyone can solve (b) and (c)?
part b does not look like fibonacci sequence.
 
Hi all,
Here's a solution. Notice as usual with generating functions no attention is paid to convergence, but as usual at the end you can go back and verify the steps for z values where the generating functions converge.

2qltwzc.png
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K