- #1
Ravi Mohan
- 196
- 21
How do we solve a system of coupled differential equations written below?
[tex]
-\frac{d^2}{dr^2}\left(
\begin{array}{c}
\phi_{l,bg}(r) \\
\phi_{l,c}(r) \\
\end{array} \right)+ \left(
\begin{array}{cc}
f(r) & \alpha_1 \\
\alpha_2 & g(r)\\
\end{array} \right).\left(
\begin{array}{c}
\phi_{l,bg}(r) \\
\phi_{l,c}(r) \\
\end{array} \right) = E\left(
\begin{array}{c}
\phi_{l,bg}(r) \\
\phi_{l,c}(r) \\
\end{array} \right)
[/tex]
Here [itex]f(r)[/itex] and [itex]g(r)[/itex] are quadratic functions of [itex]r[/itex]. [itex]\alpha_1,\alpha_2\text{ and }E[/itex] are constants.
[tex]
-\frac{d^2}{dr^2}\left(
\begin{array}{c}
\phi_{l,bg}(r) \\
\phi_{l,c}(r) \\
\end{array} \right)+ \left(
\begin{array}{cc}
f(r) & \alpha_1 \\
\alpha_2 & g(r)\\
\end{array} \right).\left(
\begin{array}{c}
\phi_{l,bg}(r) \\
\phi_{l,c}(r) \\
\end{array} \right) = E\left(
\begin{array}{c}
\phi_{l,bg}(r) \\
\phi_{l,c}(r) \\
\end{array} \right)
[/tex]
Here [itex]f(r)[/itex] and [itex]g(r)[/itex] are quadratic functions of [itex]r[/itex]. [itex]\alpha_1,\alpha_2\text{ and }E[/itex] are constants.