Solving $\sin(z) = 2 + 3i$ using complex numbers

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Sin
Click For Summary
SUMMARY

The discussion focuses on solving the equation $\sin(z) = 2 + 3i$ using complex numbers. Two primary approaches are presented: Option (1) utilizes the identity $\sin(z) = \sin(x + yi)$, leading to two equations, while Option (2) employs the exponential form of sine, $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$. The consensus is that Option (2) is superior, as it simplifies to a quadratic equation in terms of $w = e^{iz}$. The final solutions for $z$ are derived from the logarithmic form of the complex solutions obtained from the quadratic equation.

PREREQUISITES
  • Complex number theory
  • Understanding of the sine function in complex analysis
  • Quadratic equations and their solutions
  • Logarithmic functions in complex analysis
NEXT STEPS
  • Study the properties of complex exponential functions
  • Learn about the polar form of complex numbers
  • Explore the derivation and application of the half-angle formulas in complex analysis
  • Investigate the use of logarithms in solving complex equations
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in solving complex equations involving trigonometric functions.

Dustinsfl
Messages
2,217
Reaction score
5
What is the best way to handle $\sin(z) = 2 + 3i$?

Option (1)
$\sin(z) = \sin(x + yi) = \sin(x)\cos(yi) + \sin(yi)\cos(x) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$
$\sin(x)\cosh(y) = 2$
$\sinh(y)\cos(x) = 3$

Option (2)
$\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$

Which option is better or is there another option?

Also, I am stuck on (1) and (2) anyways.
 
Physics news on Phys.org
dwsmith said:
Option (2) $\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$

This is the best option. Write $w=e^{iz}$ and you'll obtain $w^2+(6-4i)w-1=0$ . If $w_1,w_2$ are the solutions of the quadratic equation then, $e^{iz}=w_1,e^{iz}=w_2$ etc.
 
$$
\displaystyle
w = \frac{4i + 6 \pm\sqrt{(6 - 4i)^2 + 4}}{2} = 2i + 3 \pm\sqrt{6 - 12i}
$$

What can be done about the radical now?
 
dwsmith said:
$$
\displaystyle
w = \frac{4i + 6 \pm\sqrt{(6 - 4i)^2 + 4}}{2} = 2i + 3 \pm\sqrt{6 - 12i}
$$

What can be done about the radical now?

Convert it to polars, then take it to the power of 1/2.
 
Prove It said:
Convert it to polars, then take it to the power of 1/2.

So $r = 6\sqrt{5}$. What is $\theta = \tan^{-1}\left(-2\right) =$ ??
 
dwsmith said:
So $r = 6\sqrt{5}$. What is $\theta = \tan^{-1}\left(-2\right) =$ ??

It's in the fourth quadrant, so it would be $ - \arctan{(2)}$.
 
Prove It said:
It's in the fourth quadrant, so it would be $ - \arctan{(2)}$.

This is horrible with all the decimals.

$$
\displaystyle
w = 2i + 3 \pm\sqrt{6}\sqrt[4]{5}\exp\left(-\frac{i\tan^{-1}(2)}{2}\right)
$$

Should I convert $2i + 3$ to polar?
 
Last edited:
dwsmith said:
This is horrible with all the decimals.

$$
\displaystyle
w = 2i + 3 \pm\sqrt{6}\sqrt[4]{5}\exp\left(-\frac{i\tan^{-1}(2)}{2}\right)
$$

Should I convert $2i + 3$ to polar?

No, now you should convert everything to Cartesians. And keep everything exact.
 
Prove It said:
No, now you should convert everything to Cartesians. And keep everything exact.

Is the half angle formula going to need to be used here?
 
  • #10
dwsmith said:
Is the half angle formula going to need to be used here?

No. You have $\displaystyle \sqrt{6}\sqrt[4]{5}e^{-\frac{i\arctan{2}}{2}} $, which is a complex number with $ \displaystyle r = \sqrt{6}\sqrt[4]{5}$ and $ \displaystyle \theta = -\frac{\arctan{2}}{2} $. So what would this number be in Cartesians?
 
  • #11
Prove It said:
No. You have $\displaystyle \sqrt{6}\sqrt[4]{5}e^{-\frac{i\arctan{2}}{2}} $, which is a complex number with $ \displaystyle r = \sqrt{6}\sqrt[4]{5}$ and $ \displaystyle \theta = -\frac{\arctan{2}}{2} $. So what would this number be in Cartesians?

So you are saying to leave it in this form:

$\displaystyle\sqrt{6}\sqrt[4]{5}\cos\left(\frac{\arctan(2)}{2}\right) - i\sqrt{6}\sqrt[4]{5}\sin\left(\frac{\arctan(2)}{2}\right)$
 
  • #12
dwsmith said:
So you are saying to leave it in this form:

$\displaystyle\sqrt{6}\sqrt[4]{5}\cos\left(\frac{\arctan(2)}{2}\right) - i\sqrt{6}\sqrt[4]{5}\sin\left(\frac{\arctan(2)}{2}\right)$

Yes. Then perform the addition and subtraction.

On second thought, you probably could simplify these using half angle identities and the Pythagorean Identity, it depends on what's expected of you...

\[ \displaystyle \begin{align*} 1 + \tan^2{\theta} &\equiv \frac{1}{\cos^2{\theta}} \\ \cos^2{\theta} &\equiv \frac{1}{1 + \tan^2{\theta}} \\ \cos{\theta} &\equiv \pm \frac{1}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

and

\[ \displaystyle \begin{align*} 1 + \frac{1}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \frac{1 + \tan^2{\theta}}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \sin^2{\theta} &\equiv \frac{\tan^2{\theta}}{1 + \tan^2{\theta}} \\ \sin{\theta} &\equiv \pm \frac{\tan{\theta}}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]
 
Last edited:
  • #13
Prove It said:
Yes. Then perform the addition and subtraction.

On second thought, you probably could simplify these using half angle identities and the Pythagorean Identity, it depends on what's expected of you...

\[ \displaystyle \begin{align*} 1 + \tan^2{\theta} &\equiv \frac{1}{\cos^2{\theta}} \\ \cos^2{\theta} &\equiv \frac{1}{1 + \tan^2{\theta}} \\ \cos{\theta} &\equiv \pm \frac{1}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

and

\[ \displaystyle \begin{align*} 1 + \frac{1}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \frac{1 + \tan^2{\theta}}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \sin^2{\theta} &\equiv \frac{\tan^2{\theta}}{1 + \tan^2{\theta}} \\ \sin{\theta} &\equiv \pm \frac{\tan{\theta}}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

I know have this mess:

$$
\begin{array}{lll}
\displaystyle e^{iz} & = & \displaystyle 3 + \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 - \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)\\
\displaystyle e^{iz} & = & \displaystyle 3 - \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 + \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)
\end{array}
$$

How do I solve for z?
 
  • #14
dwsmith said:
I know have this mess:

$$
\begin{array}{lll}
\displaystyle e^{iz} & = & \displaystyle 3 + \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 - \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)\\
\displaystyle e^{iz} & = & \displaystyle 3 - \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 + \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)
\end{array}
$$

How do I solve for z?

You could use a Logarithm. Otherwise, convert this complex number to its exponential form (actually that will probably be easier).
 
  • #15
Prove It said:
Convert it to polars, then take it to the power of 1/2.

Not necessary for square roots, $\sqrt{6-12i}=x+iy\Leftrightarrow (x+iy)^2=6-12i\Leftrightarrow (x^2-y^2=6)\;\wedge\;(2xy=-12)\Leftrightarrow\ldots$
 
  • #16
Fernando Revilla said:
Not necessary for square roots, $\sqrt{6-12i}=x+iy\Leftrightarrow (x+iy)^2=6-12i\Leftrightarrow (x^2-y^2=6)\;\wedge\;(2xy=-12)\Leftrightarrow\ldots$
So I ended up getting

$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$

Something is wrong I believe.

I tested the values and for $x^2-y^2 = 6$

Only $x=\sqrt{3+3\sqrt{5}}$ and $y=\sqrt{-3+3\sqrt{5}}$ worked but when multiplied together they weren't negative 6.
 
Last edited:
  • #17
dwsmith said:
So I ended up getting

$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$

Something is wrong I believe.

I tested the values and for $x^2-y^2 = 6$

Only $x=\sqrt{3+3\sqrt{5}}$ and $y=\sqrt{-3+3\sqrt{5}}$ worked but when multiplied together they weren't negative 6.

Actually you should have found that there are four possible solutions, since $ \displaystyle x = \pm \sqrt{3 + 3\sqrt{5}} $ and $\displaystyle y = \pm \sqrt{-3 + 3\sqrt{5}} $ are all possible...

Anyway, if we multiply their absolute values...

\[ \displaystyle \begin{align*} \left(\sqrt{3 + 3\sqrt{5}}\right)\left(\sqrt{-3 + 3\sqrt{5}}\right) &= \sqrt{\left(3 + 3\sqrt{5}\right)\left(-3 + 3\sqrt{5}\right)} \\ &= \sqrt{-9 + 9\sqrt{5} - 9\sqrt{5} + 45} \\ &= \sqrt{36} \\ &= 6 \end{align*} \]

So the possible solutions are those which have differing signs (in order to get a negative when multiplied).

Therefore, the solutions are $\displaystyle (x, y) = \left(\sqrt{3 + 3\sqrt{5}}, -\sqrt{-3 + 3\sqrt{5}}\right)$ or $ \displaystyle (x, y) = \left(-\sqrt{3 + 3\sqrt{5}}, \sqrt{-3 + 3\sqrt{5}}\right)$.
 
  • #18
$e^{iz} = w = 3 + \sqrt{3 + 3\sqrt{5}} + i\left(2 - \sqrt{3 + 3\sqrt{5}}\right)$, $3 - \sqrt{3 + 3\sqrt{5}} + i\left(2 + \sqrt{3 + 3\sqrt{5}}\right)$, $3 - \sqrt{3 + 3\sqrt{5}} + i\left(2 + \sqrt{-3 + 3\sqrt{5}}\right)$, and $3 + \sqrt{3 + 3\sqrt{5}} + i\left(2 - \sqrt{-3 + 3\sqrt{5}}\right)$

$z = \tan^{-1}\left(\dfrac{2-\sqrt{3+3\sqrt{5}}}{3+\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{19+6\sqrt{5}+2\sqrt{3(1+\sqrt{5}}}\right)$

$z = \tan^{-1}\left(\dfrac{2+\sqrt{3+3\sqrt{5}}}{3-\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{19+6\sqrt{5}-2\sqrt{3(1+\sqrt{5}}}\right)$

$z = \tan^{-1}\left(\dfrac{2+\sqrt{-3+3\sqrt{5}}}{3-\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{\left(2+\sqrt{-3+3\sqrt{5}}\right)^2+\left(-3+\sqrt{-3+3\sqrt{5}}\right)^2}\right)$

$z = \tan^{-1}\left(\dfrac{2-\sqrt{-3+3\sqrt{5}}}{3+\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{\left(-2+\sqrt{-3+3\sqrt{5}}\right)^2+\left(3+\sqrt{-3+3\sqrt{5}}\right)^2}\right)$

Is this really correct?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K