Solving $\sin(z) = 2 + 3i$ using complex numbers

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Sin
Click For Summary

Discussion Overview

The discussion revolves around solving the equation $\sin(z) = 2 + 3i$ using complex numbers. Participants explore various methods for handling the equation, including different representations of the sine function and approaches to simplifying complex expressions.

Discussion Character

  • Exploratory, Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • Some participants propose using the representation $\sin(z) = \sin(x + yi)$ to separate real and imaginary parts, leading to two equations: $\sin(x)\cosh(y) = 2$ and $\sinh(y)\cos(x) = 3$.
  • Others argue that using the exponential form $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$ is a more effective approach, leading to a quadratic equation in $w = e^{iz}$.
  • A participant raises a question about simplifying the radical expression obtained from the quadratic formula.
  • There are discussions on converting complex numbers to polar form and the implications of doing so on calculations.
  • Some participants express concerns about the complexity of decimal approximations and suggest keeping values in exact forms.
  • There is a debate about whether to use half-angle formulas or to simplify expressions using trigonometric identities.
  • Participants explore the implications of different signs in potential solutions for $x$ and $y$ derived from the equations.
  • One participant suggests that there are four possible solutions based on the signs of $x$ and $y$.
  • There are multiple expressions for $z$ derived from the solutions for $e^{iz}$, indicating a variety of approaches to the final solution.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for solving the equation, with multiple competing views on the approaches to take. The discussion remains unresolved regarding the most effective means of simplifying the expressions and determining the final solutions.

Contextual Notes

Limitations include unresolved mathematical steps in the simplification of radicals and the conversion between Cartesian and polar forms. The discussion also reflects varying assumptions about the expected form of the final answers.

Dustinsfl
Messages
2,217
Reaction score
5
What is the best way to handle $\sin(z) = 2 + 3i$?

Option (1)
$\sin(z) = \sin(x + yi) = \sin(x)\cos(yi) + \sin(yi)\cos(x) = \sin(x)\cosh(y) + i\sinh(y)\cos(x)$
$\sin(x)\cosh(y) = 2$
$\sinh(y)\cos(x) = 3$

Option (2)
$\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$

Which option is better or is there another option?

Also, I am stuck on (1) and (2) anyways.
 
Physics news on Phys.org
dwsmith said:
Option (2) $\displaystyle\sin(z) = \frac{e^{zi}-e^{-zi}}{2i} = 2 + 3i$

This is the best option. Write $w=e^{iz}$ and you'll obtain $w^2+(6-4i)w-1=0$ . If $w_1,w_2$ are the solutions of the quadratic equation then, $e^{iz}=w_1,e^{iz}=w_2$ etc.
 
$$
\displaystyle
w = \frac{4i + 6 \pm\sqrt{(6 - 4i)^2 + 4}}{2} = 2i + 3 \pm\sqrt{6 - 12i}
$$

What can be done about the radical now?
 
dwsmith said:
$$
\displaystyle
w = \frac{4i + 6 \pm\sqrt{(6 - 4i)^2 + 4}}{2} = 2i + 3 \pm\sqrt{6 - 12i}
$$

What can be done about the radical now?

Convert it to polars, then take it to the power of 1/2.
 
Prove It said:
Convert it to polars, then take it to the power of 1/2.

So $r = 6\sqrt{5}$. What is $\theta = \tan^{-1}\left(-2\right) =$ ??
 
dwsmith said:
So $r = 6\sqrt{5}$. What is $\theta = \tan^{-1}\left(-2\right) =$ ??

It's in the fourth quadrant, so it would be $ - \arctan{(2)}$.
 
Prove It said:
It's in the fourth quadrant, so it would be $ - \arctan{(2)}$.

This is horrible with all the decimals.

$$
\displaystyle
w = 2i + 3 \pm\sqrt{6}\sqrt[4]{5}\exp\left(-\frac{i\tan^{-1}(2)}{2}\right)
$$

Should I convert $2i + 3$ to polar?
 
Last edited:
dwsmith said:
This is horrible with all the decimals.

$$
\displaystyle
w = 2i + 3 \pm\sqrt{6}\sqrt[4]{5}\exp\left(-\frac{i\tan^{-1}(2)}{2}\right)
$$

Should I convert $2i + 3$ to polar?

No, now you should convert everything to Cartesians. And keep everything exact.
 
Prove It said:
No, now you should convert everything to Cartesians. And keep everything exact.

Is the half angle formula going to need to be used here?
 
  • #10
dwsmith said:
Is the half angle formula going to need to be used here?

No. You have $\displaystyle \sqrt{6}\sqrt[4]{5}e^{-\frac{i\arctan{2}}{2}} $, which is a complex number with $ \displaystyle r = \sqrt{6}\sqrt[4]{5}$ and $ \displaystyle \theta = -\frac{\arctan{2}}{2} $. So what would this number be in Cartesians?
 
  • #11
Prove It said:
No. You have $\displaystyle \sqrt{6}\sqrt[4]{5}e^{-\frac{i\arctan{2}}{2}} $, which is a complex number with $ \displaystyle r = \sqrt{6}\sqrt[4]{5}$ and $ \displaystyle \theta = -\frac{\arctan{2}}{2} $. So what would this number be in Cartesians?

So you are saying to leave it in this form:

$\displaystyle\sqrt{6}\sqrt[4]{5}\cos\left(\frac{\arctan(2)}{2}\right) - i\sqrt{6}\sqrt[4]{5}\sin\left(\frac{\arctan(2)}{2}\right)$
 
  • #12
dwsmith said:
So you are saying to leave it in this form:

$\displaystyle\sqrt{6}\sqrt[4]{5}\cos\left(\frac{\arctan(2)}{2}\right) - i\sqrt{6}\sqrt[4]{5}\sin\left(\frac{\arctan(2)}{2}\right)$

Yes. Then perform the addition and subtraction.

On second thought, you probably could simplify these using half angle identities and the Pythagorean Identity, it depends on what's expected of you...

\[ \displaystyle \begin{align*} 1 + \tan^2{\theta} &\equiv \frac{1}{\cos^2{\theta}} \\ \cos^2{\theta} &\equiv \frac{1}{1 + \tan^2{\theta}} \\ \cos{\theta} &\equiv \pm \frac{1}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

and

\[ \displaystyle \begin{align*} 1 + \frac{1}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \frac{1 + \tan^2{\theta}}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \sin^2{\theta} &\equiv \frac{\tan^2{\theta}}{1 + \tan^2{\theta}} \\ \sin{\theta} &\equiv \pm \frac{\tan{\theta}}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]
 
Last edited:
  • #13
Prove It said:
Yes. Then perform the addition and subtraction.

On second thought, you probably could simplify these using half angle identities and the Pythagorean Identity, it depends on what's expected of you...

\[ \displaystyle \begin{align*} 1 + \tan^2{\theta} &\equiv \frac{1}{\cos^2{\theta}} \\ \cos^2{\theta} &\equiv \frac{1}{1 + \tan^2{\theta}} \\ \cos{\theta} &\equiv \pm \frac{1}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

and

\[ \displaystyle \begin{align*} 1 + \frac{1}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \frac{1 + \tan^2{\theta}}{\tan^2{\theta}} &\equiv \frac{1}{\sin^2{\theta}} \\ \sin^2{\theta} &\equiv \frac{\tan^2{\theta}}{1 + \tan^2{\theta}} \\ \sin{\theta} &\equiv \pm \frac{\tan{\theta}}{\sqrt{1 + \tan^2{\theta}}} \end{align*} \]

I know have this mess:

$$
\begin{array}{lll}
\displaystyle e^{iz} & = & \displaystyle 3 + \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 - \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)\\
\displaystyle e^{iz} & = & \displaystyle 3 - \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 + \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)
\end{array}
$$

How do I solve for z?
 
  • #14
dwsmith said:
I know have this mess:

$$
\begin{array}{lll}
\displaystyle e^{iz} & = & \displaystyle 3 + \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 - \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)\\
\displaystyle e^{iz} & = & \displaystyle 3 - \sqrt{6}\sqrt[4]{5}\cos\left(\frac{\tan^{-1}(2)}{2}\right) + i\left(2 + \sqrt{6}\sqrt[4]{5}\sin\left(\frac{\tan^{-1}(2)}{2}\right)\right)
\end{array}
$$

How do I solve for z?

You could use a Logarithm. Otherwise, convert this complex number to its exponential form (actually that will probably be easier).
 
  • #15
Prove It said:
Convert it to polars, then take it to the power of 1/2.

Not necessary for square roots, $\sqrt{6-12i}=x+iy\Leftrightarrow (x+iy)^2=6-12i\Leftrightarrow (x^2-y^2=6)\;\wedge\;(2xy=-12)\Leftrightarrow\ldots$
 
  • #16
Fernando Revilla said:
Not necessary for square roots, $\sqrt{6-12i}=x+iy\Leftrightarrow (x+iy)^2=6-12i\Leftrightarrow (x^2-y^2=6)\;\wedge\;(2xy=-12)\Leftrightarrow\ldots$
So I ended up getting

$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$

Something is wrong I believe.

I tested the values and for $x^2-y^2 = 6$

Only $x=\sqrt{3+3\sqrt{5}}$ and $y=\sqrt{-3+3\sqrt{5}}$ worked but when multiplied together they weren't negative 6.
 
Last edited:
  • #17
dwsmith said:
So I ended up getting

$x = \pm\sqrt{3\pm 3\sqrt{5}}$ and $y = \pm\sqrt{-3\pm 3\sqrt{5}}$

Something is wrong I believe.

I tested the values and for $x^2-y^2 = 6$

Only $x=\sqrt{3+3\sqrt{5}}$ and $y=\sqrt{-3+3\sqrt{5}}$ worked but when multiplied together they weren't negative 6.

Actually you should have found that there are four possible solutions, since $ \displaystyle x = \pm \sqrt{3 + 3\sqrt{5}} $ and $\displaystyle y = \pm \sqrt{-3 + 3\sqrt{5}} $ are all possible...

Anyway, if we multiply their absolute values...

\[ \displaystyle \begin{align*} \left(\sqrt{3 + 3\sqrt{5}}\right)\left(\sqrt{-3 + 3\sqrt{5}}\right) &= \sqrt{\left(3 + 3\sqrt{5}\right)\left(-3 + 3\sqrt{5}\right)} \\ &= \sqrt{-9 + 9\sqrt{5} - 9\sqrt{5} + 45} \\ &= \sqrt{36} \\ &= 6 \end{align*} \]

So the possible solutions are those which have differing signs (in order to get a negative when multiplied).

Therefore, the solutions are $\displaystyle (x, y) = \left(\sqrt{3 + 3\sqrt{5}}, -\sqrt{-3 + 3\sqrt{5}}\right)$ or $ \displaystyle (x, y) = \left(-\sqrt{3 + 3\sqrt{5}}, \sqrt{-3 + 3\sqrt{5}}\right)$.
 
  • #18
$e^{iz} = w = 3 + \sqrt{3 + 3\sqrt{5}} + i\left(2 - \sqrt{3 + 3\sqrt{5}}\right)$, $3 - \sqrt{3 + 3\sqrt{5}} + i\left(2 + \sqrt{3 + 3\sqrt{5}}\right)$, $3 - \sqrt{3 + 3\sqrt{5}} + i\left(2 + \sqrt{-3 + 3\sqrt{5}}\right)$, and $3 + \sqrt{3 + 3\sqrt{5}} + i\left(2 - \sqrt{-3 + 3\sqrt{5}}\right)$

$z = \tan^{-1}\left(\dfrac{2-\sqrt{3+3\sqrt{5}}}{3+\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{19+6\sqrt{5}+2\sqrt{3(1+\sqrt{5}}}\right)$

$z = \tan^{-1}\left(\dfrac{2+\sqrt{3+3\sqrt{5}}}{3-\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{19+6\sqrt{5}-2\sqrt{3(1+\sqrt{5}}}\right)$

$z = \tan^{-1}\left(\dfrac{2+\sqrt{-3+3\sqrt{5}}}{3-\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{\left(2+\sqrt{-3+3\sqrt{5}}\right)^2+\left(-3+\sqrt{-3+3\sqrt{5}}\right)^2}\right)$

$z = \tan^{-1}\left(\dfrac{2-\sqrt{-3+3\sqrt{5}}}{3+\sqrt{3+3\sqrt{5}}}\right) - i\ln\left(\sqrt{\left(-2+\sqrt{-3+3\sqrt{5}}\right)^2+\left(3+\sqrt{-3+3\sqrt{5}}\right)^2}\right)$

Is this really correct?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K