MHB Solving srirahulan's "trig fix"

  • Thread starter Thread starter Sudharaka
  • Start date Start date
Click For Summary
The discussion centers on proving the equation \[\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}=\cos 2A\]. The left-hand side simplifies to \(\csc 2A\) through trigonometric identities, indicating a potential error in the original equation. Participants agree that there may be a mistake or typo in the question posed by srirahulan. The conversation highlights the importance of verifying mathematical statements for accuracy. The thread concludes with a note on the possibility of the original poster returning for further clarification.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
srirahulan's question titled "trig fix" from Math Help Forum,

Prove that, \[\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}=\cos 2A\]

Hi srirahulan,

Consider the left hand side of the equation.

\begin{eqnarray}

\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}&=&\frac{\cos^{2}(\frac{\pi}{4}-A)+\sin^{2}(\frac{\pi}{4}-A)}{\cos^{2}(\frac{\pi}{4}-A)-\sin^{2}(\frac{\pi}{4}-A)}\\

&=&\frac{1}{\cos 2(\frac{\pi}{4}-A)}\\

&=&\frac{1}{\cos (\frac{\pi}{2}-2A)}\\

&=&\frac{1}{\sin 2A}\\

\end{eqnarray}

\[\therefore \frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)} = \csc 2A\]

So I think there is either a mistake in the question or a typo on your part. :)
 
Mathematics news on Phys.org
Sudharaka said:
So I think there is either a mistake in the question or a typo on your part. :)
I agree. Since the OP has only been gone for a couple of years, maybe he will come back.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K