MHB Solving srirahulan's "trig fix"

  • Thread starter Thread starter Sudharaka
  • Start date Start date
AI Thread Summary
The discussion centers on proving the equation \[\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}=\cos 2A\]. The left-hand side simplifies to \(\csc 2A\) through trigonometric identities, indicating a potential error in the original equation. Participants agree that there may be a mistake or typo in the question posed by srirahulan. The conversation highlights the importance of verifying mathematical statements for accuracy. The thread concludes with a note on the possibility of the original poster returning for further clarification.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
srirahulan's question titled "trig fix" from Math Help Forum,

Prove that, \[\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}=\cos 2A\]

Hi srirahulan,

Consider the left hand side of the equation.

\begin{eqnarray}

\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}&=&\frac{\cos^{2}(\frac{\pi}{4}-A)+\sin^{2}(\frac{\pi}{4}-A)}{\cos^{2}(\frac{\pi}{4}-A)-\sin^{2}(\frac{\pi}{4}-A)}\\

&=&\frac{1}{\cos 2(\frac{\pi}{4}-A)}\\

&=&\frac{1}{\cos (\frac{\pi}{2}-2A)}\\

&=&\frac{1}{\sin 2A}\\

\end{eqnarray}

\[\therefore \frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)} = \csc 2A\]

So I think there is either a mistake in the question or a typo on your part. :)
 
Mathematics news on Phys.org
Sudharaka said:
So I think there is either a mistake in the question or a typo on your part. :)
I agree. Since the OP has only been gone for a couple of years, maybe he will come back.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top