find_the_fun
- 147
- 0
[math]x=c_1\cos{t}+c_2\sin{t}[/math] is a two-parameter family of solutions of the DE [math]x''+x=0[/math] Find a solution of the IVP consisting of this differential equation and the following initial conditions:
[math]x(\frac{\pi}{6})=\frac{1}{2}[/math] and [math]x'\frac{\pi}{6}=0[/math]
So [math]x'=c_2\cos{t}-c_1\sin{t}[/math]
[math]x''=-c_2\sin{t}-c_1\cos{t}[/math]
First thing I'm confused about, I tried to simplify by plugging these into the DE to get.
So [math]-c_2\sin{t}-c_1\cos{t}+c_1 \cos{t}+c_2\sin{t}[/math] which cancels each other off. Why does this happen, what am I doing wrong, how is this not a problem?
Let's try a different approach and solve for [math]c_1[/math] or [math]c_2[/math].
We've got [math]x=c_1\cos{t}+c_2\sin{t}[/math]
[math]\frac{1}{2}=c_1\cos{\frac{\pi}{6}}+c_2\sin{\frac{pi}{6}}[/math]
Solving for [math]c_1=\frac{-c_2 \sin{ \frac{\pi}{6}}}{2 \cos{\frac{\pi}{6}}}[/math]
for the other initial condition we've got [math]-c_1\sin{\frac{\pi}{6}}+c_2\cos{\frac{\pi}{6}}=0[/math]
[math]c_2=\frac{c_1 \sin{\frac{\pi}{6}}}{\cos{\frac{\pi}{6}}}[/math]
Substituting in we've got [math]c_1=\frac{\frac{-c_1\sin{\frac{\pi}{6}}}{\cos{frac{\pi}{6}}}}\sin{\frac{\pi}{6}}}}{2\cos\frac{\pi}{6}}}[/math] which is really ugly.
[math]x(\frac{\pi}{6})=\frac{1}{2}[/math] and [math]x'\frac{\pi}{6}=0[/math]
So [math]x'=c_2\cos{t}-c_1\sin{t}[/math]
[math]x''=-c_2\sin{t}-c_1\cos{t}[/math]
First thing I'm confused about, I tried to simplify by plugging these into the DE to get.
So [math]-c_2\sin{t}-c_1\cos{t}+c_1 \cos{t}+c_2\sin{t}[/math] which cancels each other off. Why does this happen, what am I doing wrong, how is this not a problem?
Let's try a different approach and solve for [math]c_1[/math] or [math]c_2[/math].
We've got [math]x=c_1\cos{t}+c_2\sin{t}[/math]
[math]\frac{1}{2}=c_1\cos{\frac{\pi}{6}}+c_2\sin{\frac{pi}{6}}[/math]
Solving for [math]c_1=\frac{-c_2 \sin{ \frac{\pi}{6}}}{2 \cos{\frac{\pi}{6}}}[/math]
for the other initial condition we've got [math]-c_1\sin{\frac{\pi}{6}}+c_2\cos{\frac{\pi}{6}}=0[/math]
[math]c_2=\frac{c_1 \sin{\frac{\pi}{6}}}{\cos{\frac{\pi}{6}}}[/math]
Substituting in we've got [math]c_1=\frac{\frac{-c_1\sin{\frac{\pi}{6}}}{\cos{frac{\pi}{6}}}}\sin{\frac{\pi}{6}}}}{2\cos\frac{\pi}{6}}}[/math] which is really ugly.